

User Manual (English)

Ver : v3.9.1

Collaborative Robot **RB Series USER MANUAL**

UPDATE : 2021 / 09

INDEX

Preface	7
	•••

CHAPTER 1. INTRODUCTION	
1.1 RAINBOW ROBOTICS' COLLABORATIVE ROBOTS	8
1.2 System Configuration	9
1.3 Robot Arm	
1.4 Control Box	
1.5 TEACHING PENDANT TABLET PC (OPTIONAL)	
1.6 JOINT LIMIT	
1.7 Workspace	
1.8 Maximum Load Capacity	
Chapter 2. Safety & Precautions	23
2.1 SAFETY INDICATIONS	23
2.2 General Safety Warning & Precautions	
2.3 Usage & Functionality	
2.4 Potential Safety Issues	
2.5 LIABILITY LIMITATIONS	
2.6 Shipping & Transportation	
2.7 Emergency Stop	
2.8 User Safety	
2.9 Safety Controller	
2.10 RISK ASSESSMENT	
Chapter 3. Safety Functions	35
3.1 Introduction	
3.2 Stop Category	
3.3 FUNCTIONAL SAFETY	
3.4 SAFETY DEVICE MOUNTING LOCATION	
3.5 Emergency Stop Switch	
3.6 Operation Mode	
3.7 Operating Environment	
3.8 MAINTENANCE OF SAFETY FUNCTIONS	
	3

CHAPTER 4. INSTALLATION 51 4.1 INSTALLATION PRECAUTION 51 4.2 INSTALLATION LOCATION 52 4.3 EXAMPLES OF INSTALLATION 53 4.4 MOUNTING THE ROBOT 54 4.5 TOOL CONNECTION 55 4.6 CABLE CONNECTION 55 4.7 ROBOT CONTROL BOX I/O OVERVIEW 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.1 UI STRUCTURE 69 6.3 MAIN SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74	3.9 Applied Standards	
4.1 INSTALLATION PRECAUTION 51 4.2 INSTALLATION LOCATION 52 4.3 EXAMPLES OF INSTALLATION 53 4.4 MOUNTING THE ROBOT 54 4.5 TOOL CONNECTION 55 4.6 CABLE CONNECTION 55 4.7 ROBOT CONTROL BOX I/O OVERVIEW 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75		
4.2 INSTALLATION LOCATION 52 4.3 EXAMPLES OF INSTALLATION 53 4.4 MOUNTING THE ROBOT 54 4.5 TOOL CONNECTION 55 4.6 CABLE CONNECTION 59 4.7 ROBOT CONTROL BOX I/O OVERVIEW 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	CHAPTER 4. INSTALLATION	51
4.3 EXAMPLES OF INSTALLATION 53 4.4 MOUNTING THE ROBOT 54 4.5 TOOL CONNECTION 55 4.6 CABLE CONNECTION 59 4.7 ROBOT CONTROL BOX I/O OVERVIEW 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.1 INSTALLATION PRECAUTION	51
4.4 MOUNTING THE ROBOT 54 4.5 TOOL CONNECTION 55 4.6 CABLE CONNECTION 59 4.7 ROBOT CONTROL BOX I/O OVERVIEW 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.2 INSTALLATION LOCATION	52
4.5 Tool Connection 55 4.6 CABLE CONNECTION 59 4.7 Robot Control Box I/O Overview 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.3 EXAMPLES OF INSTALLATION	53
4.6 CABLE CONNECTION. 59 4.7 ROBOT CONTROL BOX I/O OVERVIEW. 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY. 70 6.3 MAIN SCREEN DISPLAY. 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE. 75	4.4 Mounting the Robot	54
4.7 ROBOT CONTROL BOX I/O OVERVIEW 60 4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.5 Tool Connection	55
4.8 SAFETY INPUT CONFIGURATION 61 4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE. 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.6 CABLE CONNECTION	59
4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION 63 4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.7 Robot Control Box I/O Overview	60
4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION 65 CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.8 SAFETY INPUT CONFIGURATION	61
CHAPTER 5. GET STARTED 67 5.1 CONTROL BOX ON/OFF 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION	63
5.1 CONTROL BOX ON/OFF. 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION	65
5.1 CONTROL BOX ON/OFF. 67 5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75		
5.2 TEACHING PENDANT/PC ON/OFF 68 CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE. 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 70 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE. 75	CHAPTER 5. GET STARTED	
CHAPTER 6. SOFTWARE OVERVIEW 69 6.1 UI STRUCTURE 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75	5.1 Control Box On/Off	67
6.1 UI STRUCTURE. 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE. 75	5.2 TEACHING PENDANT/PC ON/OFF	
6.1 UI STRUCTURE. 69 6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE. 75		CO
6.2 STARTUP SCREEN DISPLAY 70 6.3 MAIN SCREEN DISPLAY 71 6.4 Make 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75		
6.3 MAIN SCREEN DISPLAY 71 6.4 MAKE 72 6.5 PLAY 73 6.6 SETUP 74 CHAPTER 7. PROGRAMMING GUIDE 75		
6.4 Make 72 6.5 Play 73 6.6 Setup 74 Chapter 7. Programming Guide. 75		
6.5 PLAY		
6.6 Setup		
Chapter 7. Programming Guide75		
	6.6 Setup	74
	CHAPTER 7. PROGRAMMING GUIDE	75
7.1 ICONS AND ACTION SCREEN	7.1 ICONS AND ACTION SCREEN	75
7.2 Create Teaching Environment	7.2 Create Teaching Environment	
7.3 TEACHING (PROGRAMMING)	7.3 Teaching (Programming)	
7.4 TEACHING ICONS AND DESCRIPTION		
7.5 Editing The Program		
7.6 Program Management		
7.7 OPERATION UTILITIES	7.7 OPERATION UTILITIES	

CHAPTER 8. ROBOT OPERATION	
8.1 Robot Operation	
8.2 Robot Status Check	
8.3 TROUBLESHOOTING WHILE OPERATING	
Chapter 9. Setup	
9.1 Set-up(Cobot)	
9.2 Set-up(Tool)	
9.3 Set-up(System)	
9.4 Set-up(Log)	
9.5 Set-up(Utility)	
9.6 Set-up(Serial)	
9.7 Set-up(I/O 1)	
9.8 Set-up(I/O 2)	
9.9 Set-up(Inbox)	
9.10 Set-up(Interface)	
9.11 Set-up(Coordinate)	
9.12 Set-up(Devices)	
9.13 Set-up(Tool List)	
9.14 Set-up(Program Table)	
CHAPTER 10. MAINTENANCE	
10.1 CHECK LIST AND PERIOD	
10.2 Robot Arm Maintenance	
10.3 Control Box Maintenance	
APPENDIX A. SYSTEM SPECIFICATION	
APPENDIX B. FOOT PRINT SCHEMATIC	
APPENDIX C. TOOL FLANGE SCHEMATIC	
APPENDIX D. CONTROL BOX ELECTRICAL SCHEMATIC	
APPENDIX D-1. CONTROL BOX DIGITAL INPUT	
APPENDIX D-2. CONTROL BOX DIGITAL OUTPUT	
APPENDIX D-3. TOOL FLANGE DIGITAL INPUT	
APPENDIX D-4. TOOL FLANGE DIGITAL OUTPUT	

APPENDIX E. EXTERNAL SCRIPT CONTROL API	19
Appendix F. Coordinate System	09
APPENDIX G. STOPPING TIME/DISTANCE	10
Appendix H. Nameplate	11
APPENDIX I. MODBUS TCP SERVER	13
APPENDIX J. SYSTEM UPDATE	18
APPENDIX K. ANDROID TABLET CONFIGURATION	21
APPENDIX L. BRAKE SYSTEM	24

PREFACE

Before installing this product, please read the user manual thoroughly. Please follow the instructions in the manual according to the installation procedure. The contents of this manual are based on the version of the manual when it was written, and the information about the product may have been changed without notifying the user in advance. If you are unsure about the requirements, recommendations or safety procedures described in this manual, please contact Rainbow Robotics. Some illustrations in this manual are intended to help you understand the concepts and installation of the system and may differ from actual products.

Rainbow Robotics Inc. owns copyright and intellectual property rights on all contents and designs of this manual. Therefore, the use, replication, and distribution of Rainbow Robotics Inc. properties and materials without prior written permission is strictly prohibited and corresponds to Rainbow Robotics' infringement of intellectual property rights.

User is solely responsible for any misuse or alteration of the patent rights of this equipment. The information contained in this manual is reliable.

The information provided in this manual is the property of Rainbow Robotics Inc. and may not be reproduced in whole or in part without of Rainbow Robotics Inc.'s consent. The information contained in this manual is subject to change without notice. This manual is an original instruction. For more information on revising the manual, please visit the website

(www.rainbow-robotics.com).

© Rainbow Robotics Inc. All rights reserved

CHAPTER 1. INTRODUCTION

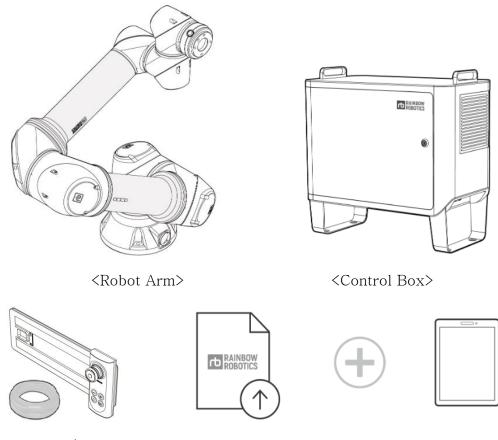
1.1 RAINBOW ROBOTICS' COLLABORATIVE ROBOTS

The RB product line from Rainbow Robotics is a series of collaborative robots. The RB series is designed to be easily accessible and usable to anyone. The RB series is specialized to perform regular, continuous, and repetitive tasks in small and dense human environments across various fields without any additional safety devices. The RB series is the robotic solution to increase productivity for your business.

- Intuitive Usability: It is easy to set up and operate an RB robot. Experts and non-experts alike can use it effectively through the intuitive graphical User Interface (UI) configuration.
- Convenience and safety: The RB series has External and self-collision detection systems, which minimize accidents and injuries while providing a safe working environment for the operator.
- Space Efficiency: An RB can be applied to all types of production lines, regardless of space. Users may use it in many different environments due to versatile orientations that allow it to be installed on a variety of surfaces.

1.2 System Configuration

The system configuration of an RB is illustrated in the figure below.



< Stand-type control box system configuration >

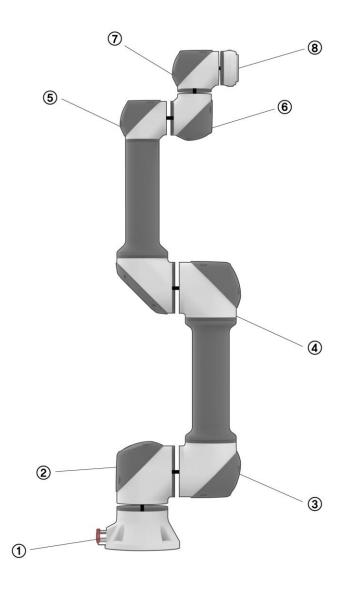
- Robot Arm: The Robot Arm is an industrial collaborative robot that can be used for the repetition of simple tasks, carrying small objects, or assembling parts. It can be used with various third-party robotic grippers and as well as various types of tools.
- Control Box: The Control Box controls the movement of the robot arm according to user programs contained on the Teaching Pendant/Tablet PC. Digital and analog input/output ports are available for connecting various devices and tools.
- Estop/Jog Interface(For stand-type control box): With the emergency stop switch, the robot operation can be stopped. It comes with simple program flow control buttons such as Play/Stop.
- Teaching Pendant/Tablet PC (optional): The Teaching Pendant/Tablet PC is an external device on which a user can create programs and operate the system. It is used to setup, program, and send commands to the robot arm.

The RB contains system components and accessories as described below.

■ Stand-type control box components

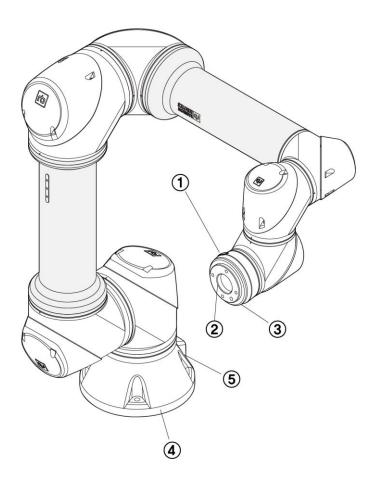
<Interface / Cables>

<User Manual>


<Tablet PC>

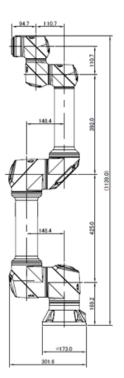
Robot	Robot Arm	
	Control Box	1 EA
	Estop/Jog Interface	1 EA
System Components	Power cable	1 EA
	Cable between Robot Arm-Control Box	1 EA
	Optional: Tablet PC, Tablet cover, USB cable	1 EA
Other	User Manual(Electronic Document)	

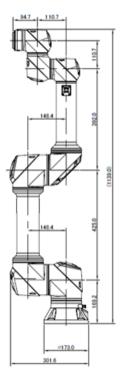
* Please use the 5 meter Power cable, Estop/Jog interface cable and RobotArm-ControlBox connection cable provided by the manufacturer. For the user LAN shield cables/IO cables/USB cables/external extension cable for the electric line passing models, less than 3 meter is recommended.


1.3 ROBOT ARM

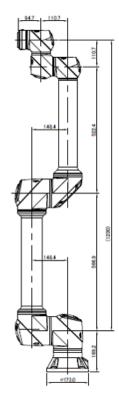
■ RB Series Joint Description

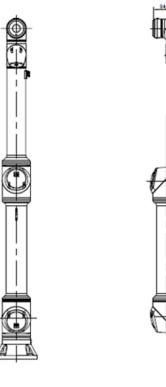
No.	Name
1	Base
2	Base Joint
3	Shoulder Joint
4	Elbow Joint
5	Wrist 1 Joint
6	Wrist 2 Joint
\bigcirc	Wrist 3 Joint
8	Tool Flange


■ RB Series Component Description


No.	Name	Description
1	Teaching Button	Button for direct-teaching
2	Tool Flange	Part for mounting tool or gripper
3	Tool I/O	I/O ports to control tool or gripper
④ Base		Part for mounting the robot arm
5	Connector	Connector for robot-arm cable

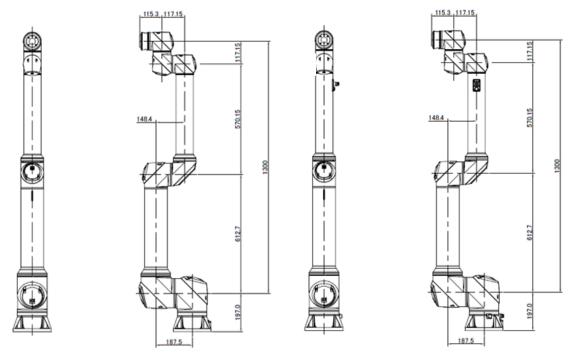
Dimensions



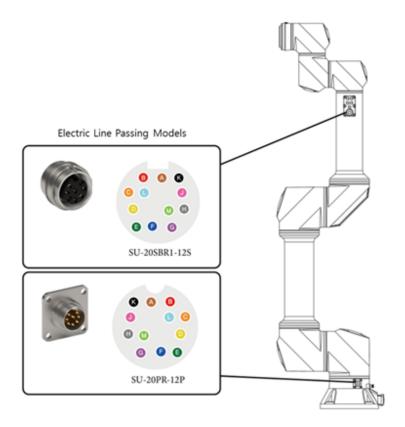


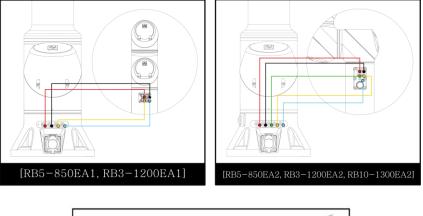
[RB5-850E]

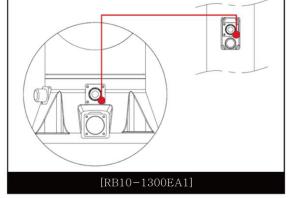
[RB5-850EA1/A2]



[RB3-1200E]




[RB10-1300E]


[RB10-1300EA1/A2]

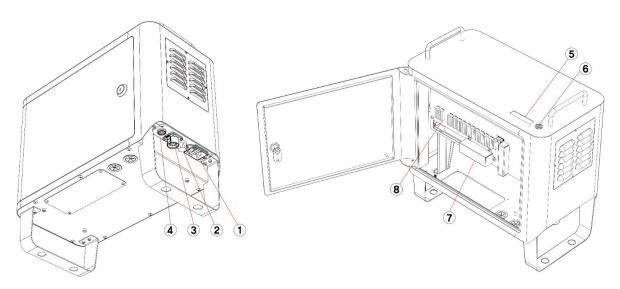
■ Configuration of the embedded Pneumatic-tubing/Electric-line in RB5-850EA#, RB3-1200EA#, and RB10-1300EA#.

[Embedded pneumatic tubing connection]

* RB5-850EA#, RB3-1200EA#, RB10-1300EA# model's pneumatic lines and wire lines are provided as shown in the following table, please refer to the picture above for use.

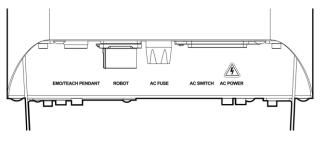
Model Name	Pneumatic Lines	Wire Lines
RB5-850EA1	4ea(4 ø Pneumatic Tube)	None
RB5-850EA2	5ea(4 ø Pneumatic Tube)	12 Pin(AWG28)
RB3-1200EA1	4ea(4 ø Pneumatic Tube)	None
RB3-1200EA2	5ea(4 ø Pneumatic Tube)	12 Pin(AWG28)
RB10-1300EA1	1ea(8 ø Pneumatic Tube)	12 Pin(AWG28)
RB10-1300EA2	5ea(4 ø Pneumatic Tube)	12 Pin(AWG28)


Warning:


1) In case of pneumatic / electric wire passing models, if passing air or power over the defined standard, hardware may be damaged.

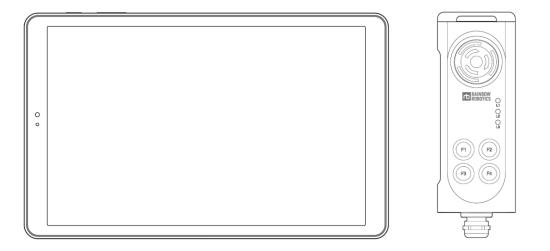
1.4 CONTROL BOX

The front and lower/inner sections of the control box are illustrated in the figure shown below.


■ Stand-type control box

<Bottom section>

<Top section>


<Main connector/socket>

No.	Name	
1	AC Power Socket (AC POWER)	
2	AC Power Switch (AC SWITCH)	
3	Connector for Robot Arm cable (ROBOT)	
4	Connector for TEACH PENDANT (EMO/TEACH PENDANT)	
5	LCD	
6	Main Switch	
7	USB/LAN connectors	
8	I/O ports	

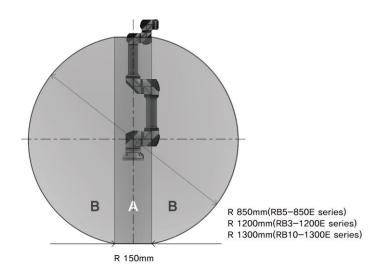
1.5 TEACHING PENDANT TABLET PC (OPTIONAL)

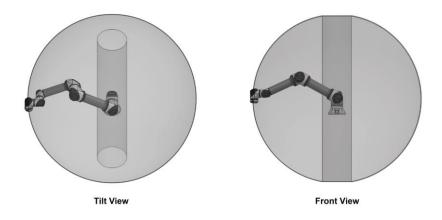
The teaching pendant/tablet PC is an optional accessory. It MUST be purchased separately.

■ For stand-type control box

- * Purchasing the tablet PC is not required. The App to operate the RB series can be downloaded from Rainbow Robotics' website.
- * Tablet setup is required for use with RB products. See the Appendix.

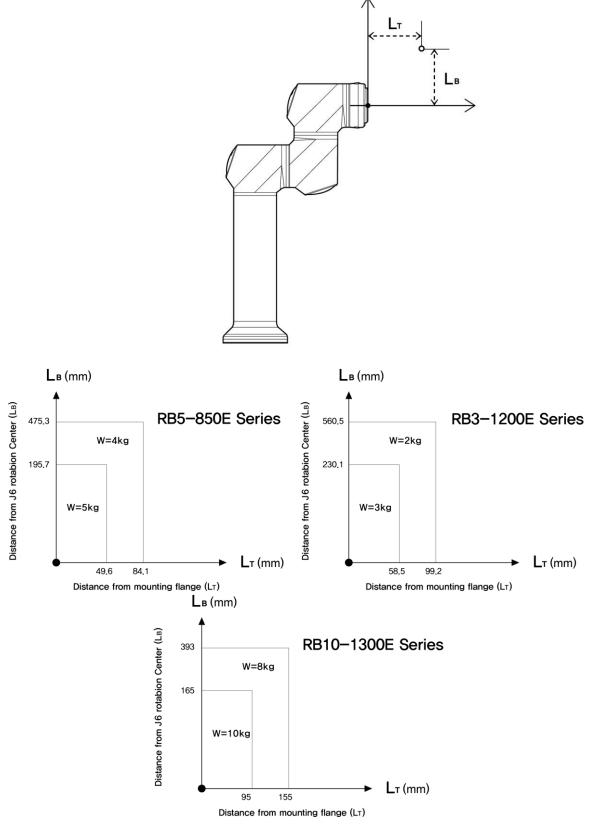
1.6 JOINT LIMIT


An RB robot consists of six joints. The axes of rotation and joint limits are illustrated in the following section.


Joint	Range
J 1	± 360 °
J 2	± 360 °
J 3	± 165 °
J 4	± 360 °
J 5	± 360 °
J 6	± 360 °

1.7 WORKSPACE

The maximum radius is an 850mm workspace for the RB5-850E Series. The maximum radius is 1300mm For the RB10-1300E Series and is 1200mm for the RB3-1200E Series. The area A in the figure below represents the kinematic singular area. This means that any motion programmed in the inertial coordinate system (e.g. programming a motion using the Move L command) may not work properly. The robot may stop itself or move faster than designated. Programing the motion in the joint coordinate system (e.g. Move J) is recommended in this particular area.



- A. The kinematic singular area. Limits some motion programmed in the inertial coordinate system (e.g. Move L).
- B. Workspace of the RB.

1.8 MAXIMUM LOAD CAPACITY

The maximum payload of the robot arm depends on the distance between the tool flange and the center of mass of the payload. The maximum payload according to this distance is as follows.

CHAPTER 2. SAFETY & PRECAUTIONS

2.1 SAFETY INDICATIONS

The following safety notices are used in this manual.

Danger :

Failure to follow instructions marked with this symbol may result in severe harm, which could result in serious injury or death.

Warning :

Failure to follow the instructions with this symbol may result in an accident, which could result in serious injury to the user.

Caution :

Failure to follow directions marked with this symbol may result in damage to the product or injury to users.

2.2 GENERAL SAFETY WARNING & PRECAUTIONS

This section contains general hazards, warnings, and cautions that will be repeated or further explained elsewhere in this manual.

Danger:

1) Robots and electrical equipment must be installed in accordance with the instructions from **Chapter 4**, **Installation**.

Warning:

- 1) Robot users and robot application system manufacturers should be familiar with the contents of this manual. In addition, they should complete operational training.
- 2) Please ensure enough space is provided for the robot arm to move freely
- 3) When using the robot, do not wear loose clothes or jewelry. Long hair should be tied so that it does not get caught in the joints of the robot.
- 4) Never operate a broken or a faulty robot.
- 5) If a fatal error occurs in the software, immediately hit the emergency switch to stop the robot, then contact your supplier or Rainbow Robotics.
- 6) Check that the robot installation angle, tool setting, safety setting, etc. are entered correctly.
- 7) Please do not connect safety equipment to the general use I / O ports in the back of the control box. Safety equipment should only be used with safety related I / O ports.
- 8) Please be careful about the movement of the robot when using the pendant for teaching.
- 9) During the operation of the robot, please do not enter the operating range of the robot. In addition, please do not touch the robot while it is operating.

- Please do not modify the robot without the support of Rainbow Robotics. Rainbow Robotics (hereinafter "the manufacturer") assumes no responsibility for any problems caused by user's modification or modification of the product.
- 11) Both the robot arm and the control box generate heat when used for a long time. Do not touch the robot after long use. If the user needs to touch the robot, please turn off the controller and allow the robot to cool down before touching.
- 12) When the robot collides with an external object, a considerable amount of kinetic energy is generated. This kinetic energy is proportional to the speed of the robot and the payload.
- 13) Please confirm that you are using the recommended installation settings for the robot. The teaching or collision detection functions may not work properly if the robot arm's mounting orientation, tool weight, tool center of gravity, length, safety configuration, etc. are not entered correctly.
- 14) The teaching function should only be used in a safe environment. Do not use this function when there are hazards nearby.
- 15) Before using the teaching function, input the relevant information (tool length, weight, center of gravity, etc.) accurately. Not entering the relevant specifications will cause malfunctions when using the direct teaching function.
- 16) If the robot joints move at an unsafe speed when using the direct teaching function, the user can force the robot to stop with the emergency switch for their safety.

Warning:

1) Robotic arm and control box generate heat during operation. Do not touch the robot arm during operation or immediately after operation as continuous contact with the robot arm may cause it to malfunction. Before manipulating or touching the robot arm, please check the temperature on the UI screen or turn off the robot arm. Please wait at least 1 hour to cool it down before touching.

Caution:

- When using with a machine or another robot that can damage the robot arm, it is recommended to test all functions separately before use. The manufacturer is not responsible for any programming errors, damage to the RB, or damage to other machines due to robot malfunctions.
- 2) Do not expose the robot to strong magnetic fields as the robot may be damaged.

Warning:

- 1) Attach a warning label to the location where there is a danger of electric shock from the electric device.
- 2) Do not tear, damage, or remove the cover. Be careful when handling parts or devices with a label attached, as well as surrounding components.
- 3) To avoid electric shock, do not touch the internal electric parts.

2.3 USAGE & FUNCTIONALITY

The robot arm is intended to be used for transferring and assembling objects by utilizing tools and should only be operated in the environment specified in the description. It is possible to work without a physical protective barrier. However, a safety mechanism should be used after performing the risk evaluation for the whole system. The use of the robot in any of the following applications and environments is considered improper use, and the manufacturer is not liable for any direct or indirect damage to the robot.

- Use in any potentially explosive environment
- Medical and life related uses
- Human and animal transport
- Any use without risk assessment
- Any use in places where the performance of the safety function is insufficient
- Any use beyond performance / environmental specifications

* Not limited to above items.

2.4 POTENTIAL SAFETY ISSUES

Additional protective measures must be taken if the final system is deemed unsafe or unable to adequately reduce risk. Users should consider the following potential risks:

- Injury (stenosis), which may occur when a finger is caught between the gears, etc.,
- Injury (stabbing, penetrating) by sharp edges or edges of the tool.
- Injury (stabbing, penetrating, falling) caused by objects located near the robot.
- Injury that can occur when working with toxic and harmful substances (skin damage, dyspnea)
- Injury caused by collision with the robot (stump, fracture)
- Injury that may occur due to not fully fastening objects
- Injury from an object that has detached or dropped from the tool mount

* Potential risks that may occur depending on the final system may be different.

2.5 LIABILITY LIMITATIONS

This manual does not cover all peripherals that affect safety. The system installer must comply with safety requirements in accordance with national safety regulations and the laws of the country where the robot arm is installed. The robotic arm consists of an end-coupled system of peripherals. This manual also does not cover all peripherals, including the design, installation, operation and safety of the final system. The final system to which the robot arm is applied must be designed and installed to meet safety requirements in accordance with the regulations and laws of the country where the system is installed.

The operator or the installer of the final system containing the robot arm is responsible for:

- Risk assessment of the final system
- Risk assessment of whether to add additional safeguards
- Ensuring that the system is properly designed, configured, and installed
- Definition of usage for the system
- Identification of important markings and contacts for use and safety
- Providing technical documents, such as manuals
- * Not limited to the above items. Complying with the safety instructions in this manual does not imply that you can avoid all risks that may occur.

2.6 SHIPPING & TRANSPORTATION

At least two people are required for transportation. Any damages to the robot incurred during shipment or transportation are excluded from the warranty.

Warning:

- 1) Be careful not to damage the product during transportation. Damages incurred during transportation will void the warranty.
- 2) When transporting the robot arm, strong vibration or shock may damage the system. The robot must be transported using the packaging box provided by the manufacturer.

2.7 EMERGENCY STOP

The emergency stop button can be used to forcefully stop the robot arm if there is an emergency. By pressing the emergency stop button, the user will stop commands sent from the robot control box and terminate any motion.

The section below describes how the emergency stop button for stand-type control box works.

Emergency Stop

Users can stop the robot arm immediately by pressing the EMERGENCY STOP button.

■ Re-Activating from Emergency Stop

Turning the EMERGENCY STOP button in clockwise direction.

2.8 USER SAFETY

For the user's safety, please note the following:

Powerless robot operation

In case of an emergency, or in any situation without power, the user can move the robot arm by forcing the joints into a different configuration (forced back driving). To perform forced back driving, the user must push or pull the robot arm firmly. Please ensure that the robot is not powered-on while performing forced back driving.

Caution:

1) If excessive force is applied to the joints in the non-powered state, please be aware that the driving part may be overloaded. The manufacturer is not responsible for any damage caused by excessive force.

2.9 SAFETY CONTROLLER

The Safety Control System of Rainbow Robotics' RB5-850E Series, RB3-1200E Series, RB10-1300E Series follows ISO 13849-1 Cat3. PLd.

2.10 RISK ASSESSMENT

A risk assessment is important when creating a system that uses robots, including the RB. The safety factors to be considered when operating the robot depend on the configuration and integration of the robot arm into the whole system. As such, the robot alone cannot be used for risk assessment.

Please refer to the guidelines of ISO 12100 and ISO 10218-2, as well as the technical specifications of ISO / TS 15066 in order to carry out the risk assessment of robots.

A risk assessment must be performed immediately after robot arm installation. This assessment is to determine and configure safety settings. Determining the need for additional emergency stop buttons, as well as adding protective measures for the surrounding environment, are the key tasks of risk assessment.

The safety-related functions of the collaborative robot can be configured in the safety configuration menu. The menu provides the following functions.

- I / O settings: The control box can be set to output safety information through the output terminal.
- Speed control: Allows the user to control the moving speed of the robot arm.
- Collision Detection Sensitivity Adjustment: When the robot collides with a nearby object, it will stop. However, the user can control the sensitivity at which the arm detects the collision.

If the above safety-related functions do not sufficiently reduce the risk, or if any risks cannot be eliminated, please add an additional safeguard to eliminate the risks. The manufacturer is not responsible for accidents caused by risks that do not comply with the relevant requirements provided by international standards, risks that do not comply with the relevant requirements provided by national laws and regulations, as well as any risk that is not reviewed in the above risk assessment.

CHAPTER 3. SAFETY FUNCTIONS

3.1 INTRODUCTION

This chapter contains important safety information, which must be read and understood by the integrator of the RB Series collaborative robots before the robot is powered on for the first time.

RB Series can protect users and devices by providing various safety functions and safety device interfaces. Safety functions and interfaces meet Category 3, Performance Level d (PL d) as described in ISO 13849-1 and Hardware Fault Tolerance 1, Safety Integrity Level 2 (SIL 2) as described in IEC 62061.

Caution:

- 1) Depending on the case of the robot installation, the system integrator must perform a risk assessment, and accordingly, the workspace must be configured using safety monitoring functions and interfaces.
- 2) If a fault is found in the robot's safety function or interface, Stop Category 0 is initiated.
- 3) Examples of defects include broken cables in the emergency stop circuit, incorrect wiring of additional safety devices, and non-overlapping wiring of additional safety devices (refer to Section 5 of this chapter).
- 4) System integrators and operators must be aware that there is a safety monitoring function that the robot performs internally, and the safety detection function is not only the operation of the emergency stop switch, the operation of the protective stop device, but also the position of the robot arm during task execution. The robot can be stopped in the designated stop mode even for movements above the physical limit, such as speed, momentum, etc. (See Section 3 of this chapter for the safety monitoring function).
- 5) System integrators and operators should consider the time and stopping distance between the robot stopping due to the operation of the error and safety monitoring functions described above. The system integrator must conduct a risk assessment considering the stopping distance and time (see Section 4 of this chapter).

6) System integrators and operators are aware of the fact that there is a safety monitoring function to limit the movement of the robot's joints and the robot/TCP, and must select the range of motion of the robot. TCP refers to the position to which the offset is added from the center point of the end of the robot arm.

Danger :

- 1) The system integrator must conduct a risk assessment before applying power to the robot, and if it is used differently from that determined by the risk assessment or if different parameters are used, a risk that is not sufficiently reduced may occur.
- 2) When connecting additional safety devices, the power of both the robot and the control panel must be cut off.
- 3) When installing an additional safety device, measures must be taken to ensure that there is no problem when using it mechanically. For example, when using a light curtain, it must be firmly fixed to the floor/fixture, and movement and vibration must not occur during robot operation.
- 4) All safety function interfaces are set to 24V. Be careful when connecting devices with different voltages as it may cause equipment damage and fire.
- 5) The signal from the device mounted on the Tool Flange is not included in the safety function. Do not connect the safety device to the Tool Flange cable.

3.2 STOP CATEGORY

The safety function allows the robot to initiate three types of stop categories defined according to IEC 60204-1.

Stop	Description
Category	
0	Immediately, the robot is turned off and stopped.
[STO]	* Joint brake wear may occur, which may shorten the life of the robot. Do not use
	it unless it is unavoidable.
	**Because the power of the robot is cut off, it is necessary to activate it when
	using it again after removing the danger.
1	All joints of the robot are decelerated to the maximum and stopped, and then
[SS1]	the power is cut off to stop.
	*Since the power of the robot is cut off, it is necessary to activate it when using it
	again after removing the danger.
2	All the joints of the robot are decelerated to the maximum, stop, and then enter
[SS2]	the SOS state.
	*SOS: Maintains the current position while the robot is powered on and activated,
	and starts Stop Category 0 when a position change is detected.
	** Since the power is not cut off, it can be used immediately after removing the
	danger.

- 1) In accordance with ISO10218-1 5.5.2 and 5.5.3, a suitable stop category for emergency stop and protective stop should be selected.
- 2) In case of emergency stop, you must select from stop category 0 or 1.
- 3) In case of emergency stop, activation is required.
- 4) In case of protection stop, at least one must be selected from stop categories 0 and 1.
- 5) For additional protection stops, stop category 2 can be used.

3.3 FUNCTIONAL SAFETY

The manufacturer recommends the following conditions are met for the installation location. The safety functions of the collaborative robot RB Series are used to reduce the risk of the robot system determined by risk assessment.

The parameters of the safety function are set at the factory, and the system integrator can change some items according to the risk assessment. Position and speed items are defined based on the base of the robot.

	Safety Function	PL & Category
Safety stopping	SF.1 STO (Safe Torque Off)	PL d, Category 3
functions	SF.2 SS1 (Safe Stop 1)	PL d, Category 3
	SF.3 SS2 (Safe Stop 2)	PL d, Category 3
Safety monitoring	SF.4 SOS (Safe Operating Stop)	PL d, Category 3
functions	SF.5 SLP (Safely-Limited Position)	PL d, Category 3
	SF.6 SLS (Safely-Limited Speed)	PL d, Category 3
	SF.7 SLA (Safely-Limited Acceleration)	PL d, Category 3
	SF.8 SLI (Safely-Limited Increment)	PL d, Category 3
	SF.9 SLT (Safely-Limited Torque)	PL d, Category 3
	SF.10 RPL (Robot Position Limit)	PL d, Category 3
	SF.11 TSL (TCP Speed Limit)	PL d, Category 3
	SF.12 CBPL (Control Box Power Limit)	PL d, Category 3
Emergency stop	SF.13 EMS1 (Emergency Stop1)	PL d, Category 3
	SF.14 EMS2 (Emergency Stop2)	PL d, Category 3
Protective stop	SF.15 PRS (Protective Stop)	PL d, Category 3
	SF.16 HSS (Hard Safeguard Stop)	PL d, Category 3
	SF.17 SSS (Soft Safeguard Stop)	PL d, Category 3

The following is the safety function specifications provided by RB Series.

- STO(Safe Torque Off): This function prevents force-producing power from being provided to the motor. Power, that can cause rotation, is not applied to the motor. This safety sub-function corresponds to an uncontrolled stop in accordance with stop category 0 of IEC 60204-1.

- SS1(Safe Stop 1): This function is specified as either a) SS1-d (Safe-Stop 1 deceleration controlled) initiates and controls the motor deceleration rate within selected limits to stop the motor and performs the STO function when the motor

speed is below a specified limit; or b) SS1-r (Safe-Stop 1 ramp monitored) initiates and monitors the motor deceleration rate within selected limits to stop the motor and performs the STO function when the motor speed is below a specified limit; or c) SS1-t (Safe Stop 1 time controlled) initiates the motor deceleration and performs the STO function after an application specific time delay. This safety sub-function corresponds to a controlled stop in accordance with stop category 1 of IEC 60204-1. Above three candidates, our system uses SS1-t.

- SS2(Safe Stop 2): This function is specified as either a) SS2-d (Safe Stop 2 deceleration controlled) initiates and controls the motor deceleration rate within selected limits to stop the motor and performs the safe operating stop function when the motor speed is below a specified limit; or b) SS2-r (Safe Stop 2 ramp monitored) initiates and monitors the motor deceleration rate within selected limits to stop the motor and performs the safe operating stop function when the motor speed is below a specified limit; or c) SS2-t (Safe Stop 2 time con-trolled) initiates the motor deceleration and performs the safe operating stop function after an application specific time delay. This safety sub-function SS2 corresponds to a controlled stop in accordance with stop category 2 of IEC 60204-1. Above three candidates, our system uses SS2-t.

- SOS(Safe Operating Stop): This function prevents the motor from deviating more than a defined amount from the stopped position. The PDS (SR) provides energy to the motor to enable it to resist external forces. This description of an operational stop function is based on implementation by means of a PDS (SR) without external (for example mechanical) brakes.

- SLP(Safely-Limited Position): This function prevents the motor shaft (or mover, when a linear motor is used) from exceeding the specified position limit(s).

- SLS(Safely-Limited Speed): This function prevents the motor from exceeding the specified speed limit.

- SLA(Safely-Limited Acceleration): This function prevents the motor from exceeding the specified acceleration and/or deceleration limit.

- SLI(Safely-Limited Increment): This function prevents the motor shaft from exceeding the specified limit of position increment within specified time.

- SLT(Safely-Limited Torque): This function prevents the motor from exceeding the specified torque (or force, when a linear motor is used) limit.

- RPL(Robot Position Limit): This function prevents the robot arm's TCP (tool center point) or body frame exceeding the specified spatial region.

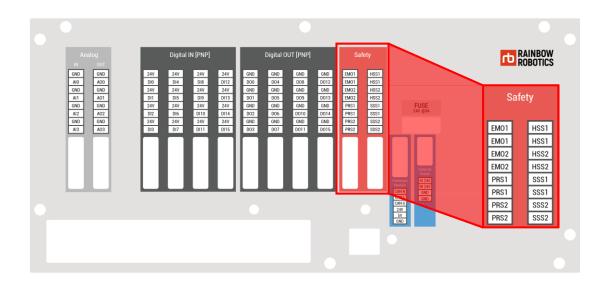
- TSL(TCP Speed Limit): This function prevents the robot arm's TCP speed exceeding the specified speed.

- CBPL(Control Box Power Limit): This function prevents the Control Box's power consumption exceeding the specified limit.

- EMS1(Emergency Stop1): This function activates the stop mode when the emergency stop switch of the Teaching Pendant Unit is activated. The stop mode is the SF.2.

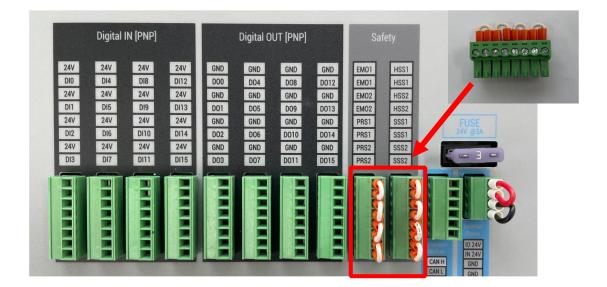
- EMS2(Emergency Stop2): This function activates the stop mode when the special I/O ports of the Control Box are activated. Those ports are provided for users to connect their own switch devices. The stop mode is the SF.2.

- PRS(Protective Stop): This function activates the stop mode when the special I/O ports of the Control Box are activated. Those ports are provided for users to connect their own protective devices. The stop mode is the SF.2.


- HSS(Hard Safeguard Stop): This function activates the stop mode when the special I/O ports of the Control Box are activated. Those ports are provided for users to connect their own protective devices. The stop mode is the SF.1.

- SSS(Soft Safeguard Stop): This function activates the stop mode when the special I/O ports of the Control Box are activated. Those ports are provided for users to connect their own protective devices. The stop mode is SF.3.

3.4 SAFETY DEVICE MOUNTING LOCATION


In addition to the basic emergency stop switch, the RB Series can be equipped with additional safety devices required by the system integrator through risk assessment.

The safety-dedicated contact terminal consists of 16 ports. This terminal is a redundant dedicated contact input terminal.

The additional ports can be equipped with 4 equipment. The robot is delivered with a default configuration, which enables operation without any additional safety equipment.

When using without connecting an external safety device, connect and use the basic contact input as shown below.

Safety device port specifications are as follows.

■ EMO

This port is used when it is necessary to install an extra emergency stop switch through risk assessment.

The emergency stop switch should be used as a product conforming to IEC 60947-5-5.

Emergency stop generated through EMO is designated as stop category 1.

PRS

This port is used to connect one or more protective stop devices through risk assessment.

Protective stop devices must be used in accordance with 5.3.8.3 of ISO 10218-2.

Protection stops occurring through PRS are designated as stop category 1.

HSS

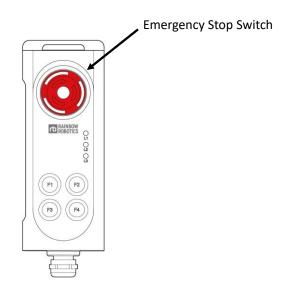
This port is used to connect one or more protective stop devices through risk assessment.

Protective stop devices must be used in accordance with 5.3.8.3 of ISO 10218-2.

Protection stops occurring through HSS are designated as stop category 0.

■ SSS

This port is used to connect one or more protective stop devices through risk assessment.

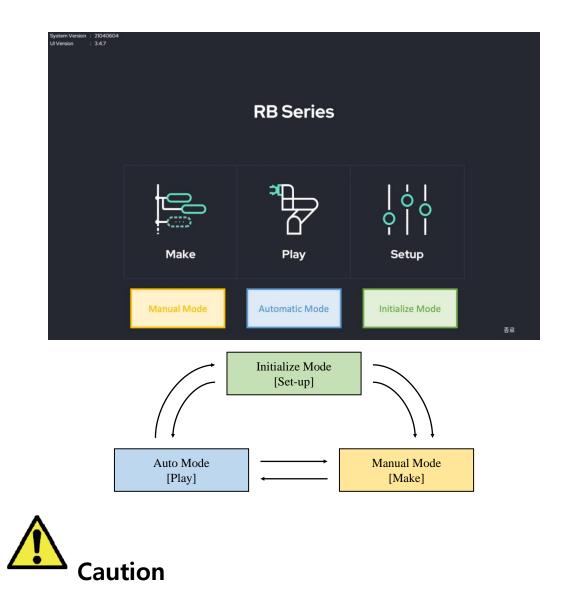

Protective stop devices must be used in accordance with 5.3.8.3 of ISO 10218-2.

Protective stops that occur through SSS are designated as stop category 2.

3.5 Emergency Stop Switch

The collaborative robot RB Series allows the operator to use the emergency stop switch to stop the robot in preparation for an emergency situation.

In the event of an emergency, the robot must be stopped immediately by pressing the emergency stop switch on the top of the pendant.



- 1) The emergency stop switch is designated as stop category 1.
- 2) You can cancel the emergency stop function by turning the emergency stop switch clockwise.
- 3) If you need an additional emergency stop switch, you can use it through the control panel.
- 4) Emergency stop should not be used as a risk reduction method, but should be used as a secondary protective device.

3.6 OPERATION MODE

The operation mode of the collaborative robot RB Series is composed as follows.

When entering the automatic mode, you must access it through a password.

- 1) The password for entering automatic mode is not set at the time of shipment. Set up and use a password so that no one else can access it.
- 2) Before entering Auto Mode, the user must remove the dangerous situation and check the status of the emergency stop switch and the protective stop device.
- 3) In any case, the user must correctly grasp the installation state of the robot and complete the setting before operating the robot.

■ Initialize Mode [Set-up]

Peripheral device settings or robot status can be set before the robot moves.

Overall settings for robot motion such as workspace, TCP offset, and payload can be made.

At this time, power is not supplied to the motor. The motor can be powered through the activation action.

■ Auto Mode [Play]

The robot is in a state where only predefined tasks are performed without user intervention. At this time, power is supplied to the motor.

The motion of the robot programmed through the simulation function can be verified through simulation, and the robot can be driven by the verified program by converting it to a real state.

At this time, the robot is performing pre-set safety functions, and the user can monitor the status of the robot and peripheral devices through the Play window.

Manual Mode [Make]

It is a state in which the robot is operated through direct actions of the user. At this time, power is supplied to the motor.

Direct teaching, program creation and modification, and manual operation of peripheral devices can be performed, and the robot can only be operated at the moment the user operates the tablet through the safe speed slide bar.

When you release your hand from the safety slide, the robot will stop moving immediately.

- 1) In case of manual operation, the safety slide function must be set.
- 2) At initial shipment, the safety slide function is deactivated.
- 3) In addition, when using a 3-position enabling device, it must be used in accordance with 5.8.3 of ISO 10218-1.

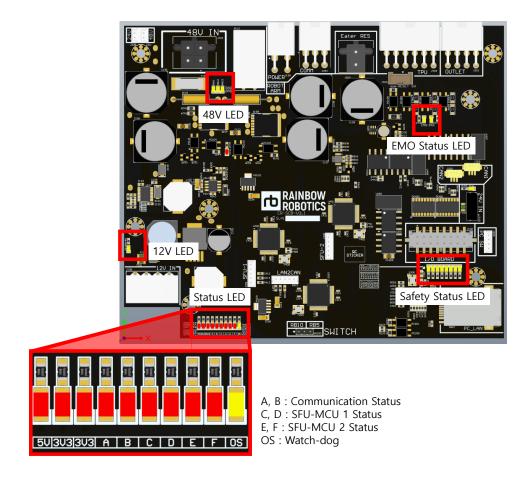
3.7 OPERATING ENVIRONMENT

In order to keep the robot in a safe state for a long time, it must be used in the following environment.

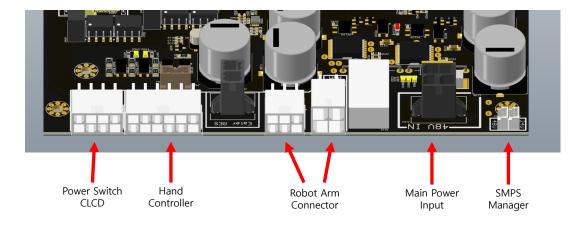
Maximum allowable operating temperature	50°C
Maximum permissible storage temperature	60 °C
Minimum allowable operating temperature	0°C
Minimum allowable storage temperature	-5°C
Maximum permissible humidity	80%
Lowest permissible humidity	20%

3.8 MAINTENANCE OF SAFETY FUNCTIONS

In order to keep the robot in a safe state for a long time, it is necessary to continuously check the safety functions.


Safety Inspection Managers need periodic inspections for the following items. If during the inspection you find a problem that cannot be solved by yourself, contact the manufacturer.

Inspection target		Check List	Period	
	Safety	Check whether the emergency stop switch	1 Month	
Pendant	Function	mounted on the pendant is working properly.	1 Wonth	
Pendant	Cable	Check the condition of the connection cable	1 Month	
		between the pendant and the control box.		
		Check whether the EMO port to which the	1 Month	
		safety device is connected is working properly.	1 Worten	
		Check whether the PRS port to which the safety	1 Month	
	Interface rol Box	device is connected is working properly.	T MONUN	
		Check whether the HSS port to which the safety	1 Month	
		device is connected is working properly.	i wonth	
Control Box		Check whether the SSS port to which the safety	1 Month	
		device is connected is working properly.	I WORTH	
		Check the normal output of 24V voltage	1 Month	
	Power	connecting the safety device.	i wonth	
		Check if the 24V fuse is inserted normally.	1 Month	
	Cable	Check the condition of the connection cable	1 Month	
	Capie	between the safety device and the control box.		


■ Safety Function Board Specification

Inside the control box, there is a built-in safety function board to drive the RB Series.

The information of the LED indicating the operation status of the board is as follows.

Connector information connected to the board is as follows.

3.9 APPLIED STANDARDS

Standard	Title		
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic safety-		
	related systems – Part 1: General requirements		
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic safety-		
	related systems – Part 2: Requirements for		
	electrical/electronic/programmable electronic safetyrelated systems		
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic safety-		
	related systems – Part 3: Software requirements		
IEC 61508-4:2010	Functional safety of electrical/electronic/programmable electronic safety-		
	related systems – Part 4: Definitions and abbreviations		
IEC 61508-5:2010	Functional safety of electrical/electronic/programmable electronic safety- related system – Part 5: Examples of methods for the determination of		
	safety integrity levels		
IEC 61508-6:2010	Functional safety of electrical/electronic/programmable electronic safety-		
	related systems – Part 6: Guidelines on the application of IEC 61508-2 and		
	IEC 61508-3		
IEC 61508-7:2010	Functional safety of electrical/electronic/programmable electronic safety-		
	related systems – Part 7: Overview of techniques and measures		
IEC 60204-1:2016 Safety of machinery – Electrical equipment of machines – Part 1: Ge			
	requirements		
IEC 61000-6-1:	Electromagnetic compatibility (EMC) – Part 6-1: Generic standards –		
2016	Immunity standard for residential, commercial and light-industrial		
	environments		
IEC 61000-6-2:	Electromagnetic compatibility (EMC) – Part 6-2: Generic standards –		
2016	Immunity standard for industrial environments		
IEC 61000-6-7: 2014	Electromagnetic compatibility (EMC) – Part 6-7: Generic standards – Immunity requirements for equipment intended to perform functions in a		
2014	safety-related system (functional safety) in industrial locations		
IEC 61326-3-1:	Electrical equipment for measurement, control and laboratory use – EMC		
2017	requirements – Part 3-1: Immunity requirements for safety-related systems		
	and for equipment intended to perform safety-related functions (functional		
	safety) – General industrial applications		
IEC 61800-5-1:	Adjustable speed electrical power drive systems – Part 5-1: Safety		
2007	requirements –Electrical, thermal and energy		
IEC 61800-5-2:	Adjustable speed electrical power drive systems - Part 5-2: Safety		
2016	requirements – Functional		

IEC 62061:2005	Safety of machinery – Functional safety of safety-related electrical, electronic and programmable electronic control systems
ISO/TS 15066: 2016	Robots and robotic devices — Collaborative robots
ISO 10218-1: 2011	Robots and robotic devices — Safety requirements for industrial robots — Part 1: Robots
ISO 10218-2: 2011	Robots and robotic devices — Safety requirements for industrial robots — Part 2: Robot systems and integration
ISO 12100:2010	Safety of machinery — General principles for design — Risk assessment and risk reduction
ISO 13849-1: 2015	Safety of machinery — Safety-related parts of control systems — Part 1: General principles for design
ISO 13849-2: 2012	Safety of machinery — Safety-related parts of control systems — Part 2: Validation

CHAPTER 4. INSTALLATION

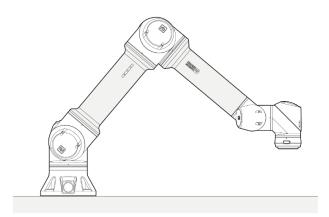
4.1 INSTALLATION PRECAUTION

Robot installers must install and operate the robots in accordance with the guidelines of ISO 12100 and ISO 10218-2, and installers must comply with the relevant requirements of international standards such as ISO / TS 15066 and national laws. The manufacturer is not responsible for any accidents caused by risks that do not comply with the relevant requirements provided by international standards, risks that do not comply with the relevant requirements provided by national laws and regulations, or those caused by failure to review the risk assessment in the previous chapter.

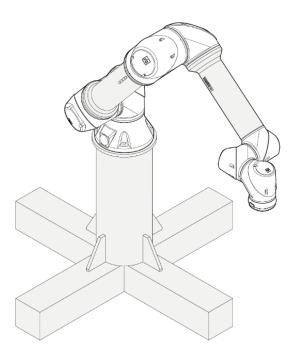
4.2 INSTALLATION LOCATION

The manufacturer recommends the following conditions are met for the installation location.

- Building with seismic design
- No leakage
- No flammable or explosive material
- Constant temperature and humidity
- Limited dust inflow

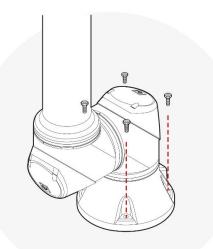


Caution:


1) If the system is not installed in a location that matches the recommendations, the performance and lifespan of the robot may be reduced.

4.3 EXAMPLES OF INSTALLATION

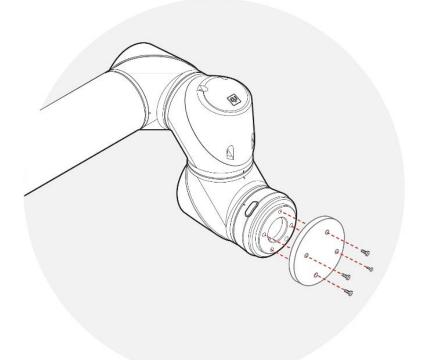
The robot arm can be installed on a horizontal surface (e.g. a table), a wall, the ceiling, or any other angle. However, the user must set the angle of installation in the system-setup when installing on a surface that is not a horizontal surface.


<Installation on the horizontal surface>

<Installation on the fixed post>

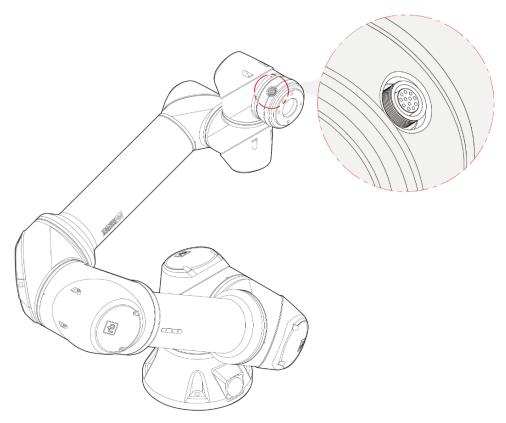
4.4 MOUNTING THE ROBOT

It is recommended to use four M8 30mm bolts for robot arm installation.


Warning:

- 1) When attaching the robot, fix it firmly so that the bolts do not come loose.
- 2) Install the robot on a sturdy surface that can withstand the combined weight of the robot and the load generated by the robot.
- 3) Please ensure that the mounting surface on the robot arm is completely in contact with the surface that it is mounted upon
- 4) Never disassemble the bolts that are assembled in the robot. Ensure that all bolts are securely fastened before operating the robot arm.
- 5) If the bolts are not fastened properly, or if a bracket etc. is installed incorrectly, the product may become damaged, or the safety of the user may be seriously affected.

4.5 TOOL CONNECTION


Use four M6 bolts to secure the tool to the tool flange.

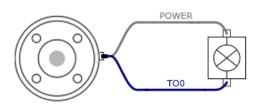
- Tools and M6 bolts are not included in the product.
- The connection methods may be different between tools. Please contact the tool manufacturer for further details.

- After fixing the tool to the tool flange, connect the necessary cables to the I/O ports on either the tool I/O or the control box I/O.
- The tool connector uses the Samwoo SW-10W-12 (P) connector.

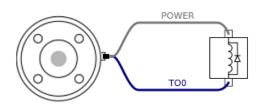
■ The tool I/O has a 12-pin connector.

■ The port specifications in the tool flange are as follows.

Port	Layout	Pin num	Signal (Non-E Version)	Signal (E Version)
	_	1	Digital Output A	Digital Output A
	_	2	Digital Output B	Digital Output B
	—	3	0/12/24 VCC	0/12/24 VCC
	—	4	Ground	Ground
		5	Digital Input A	Digital Input A
	90101	6	Digital Input B	Digital Input B
Tool I/O		7	Analog Input A	Digital Input C
	6 05 00	8	Analog Input B	Digital Input D
		9	RS485+	RS485+
	—	10	RS485-	RS485-
		11	Common Ground	Digital Input E
		12	Common Ground	Digital Input F

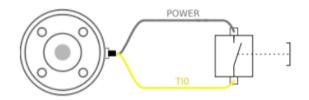

■ The internal power supply can be set to 0V, 12V, or 24V on the I/O tab of the GUI.

-	Min	Nominal	Max	Unit
24V mode	-	24	-	V
12V mode	-	12	-	V
Current Supply*	-	-	2000	mA


The tool connector uses NPN ('sinking') for the digital output. When the digital output is enabled, the corresponding port is connected to GND (ground). When the output is deactivated, the corresponding port becomes 'open' (open-collector / open-drain). The electrical specifications are as follows.

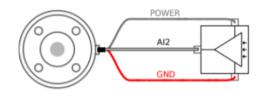
-	Min	Nominal	Max	Unit
Voltage when opened	0	-	24	V
Current through GND	0	-	2000	mA

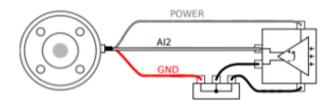
The image shown below illustrates how to turn on/off a load with 12V or 24V. The voltage level can be specified in the Tool Out (TOO) block


* It is strongly recommended to use a diode to protect the tool using an inductive load.

The tools digital inputs use PNP and pull-down resistors. Therefore, when the input port is not connected (floating), the corresponding input port is read as low (0). Electrical specifications are as follows.

-	Min	Nominal	Max	Unit
Input Voltage	0	-	24	V
Logic Low-Voltage	-	-	9	V
Logic High-Voltage	10	-	-	V


• The figure shown below illustrates how to use the digital input for a simple switch.

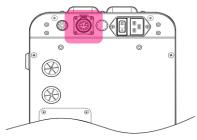

The tool analog input measures the voltage in a non-differential manner. The measurement categories are as follows.

-	Min	Nominal	Max	Unit
Input Voltage	0	-	10	V
Resolution	-	12	-	bit

The figure below shows how to connect an analog sensor with nondifferential voltage output characteristics to the tool flange.

The figure below shows how to connect an analog sensor with differential voltage output characteristics to the tool flange. Connecting the negative output of the sensor to GND (ground) works the same as the non-differential light sensor.

- 1) For further details regarding technical specification and wire connection, please refer to Appendix D.
- The cross-sectional view related to the tool flange is illustrated in Appendix C.
- The tool flange supports RS485 serial communication and supports the following serial communication standard.


Baud-Rate	9600, 19200, 38400, 57600, 115200, 1M, 2M.
Stop Bit	1,2
Parity	None, Even, Odd

4.6 CABLE CONNECTION

The cable connection for stand-type control box describes as follows.

• Connecting the robot arm to the robot control box using the robot arm cable.

Please connect the female connector to the robot arm and the male connector to the control box. Please check whether pins in the connector are bent or not.

<Connecting Part for Robot Arm cable>

■ Connecting the power cable to robot control box.

Connect the power cable to the power terminal as shown in the figure below.

<Connecting Part for AC power cable>

The specification of the power system is as follows.

Input Voltage	100 ~ 240 VAC
Input Frequency	50 ~ 60 Hz

- 1) Do not unplug the robot cable, power cable, or teaching pendant while the robot is turned on.
- 2) In the use of AC power, the peripherals should share a common ground.

4.7 ROBOT CONTROL BOX I/O OVERVIEW

To connect other external devices to the robot control box, please connect the I/O from the control box to the corresponding device. The I/O of the control box is very flexible, so it can be used to connect with various equipment such as relays, PLCs, and emergency stop buttons. The layout of the electrical interface inside the robot control box is as follows.

The specifications of the power and digital I / O provided by the control box are as follows. All digital I/O is compliant with the IEC 61131-2 standard.

Port	Parameter	Min	Туре	Max	Unit		
	Digital Output						
[DOx]	Current	0	_	1	А		
[DOx]	Voltage Drop	0	-	0.5	V		
[DOx]	Current Leak	0	-	0.1	mA		
[DOx]	Туре	_	PNP		Type		
[DOx]	IEC 61131-2	-	1A	-	Type		
		Digit	al Input				
[DIx]	Voltage	-3	_	30	V		
[DIx]	OFF Range	-3	_	5	V		
[DIx]	ON Range	11	_	30	V		
[DIx]	Current(11-30V)	2	-	15	mA		
[DIx]	Туре		PNP+		Туре		
[DIx]	IEC 61131-2	-	1	_	Туре		

* IEC 61131-2: IEC standard for programmable controllers

Caution

Caution:

When tightening the I/O wiring, please turn off the power to the control box in advance. Any damage to the product caused by the user's carelessness (24V power shorts, incorrect wiring, etc.) is not covered by the product's warranty.

4.8 SAFETY INPUT CONFIGURATION

For the safety of users, all safety-related I/O must be configured with multiple backups. Safety devices and equipment must be installed in accordance with the instructions in Chapter 2 Safety and Chapter 3 Installation.

Danger:

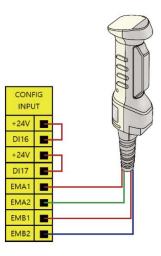
1) Never connect a safety signal to a PLC other than a safety PLC. Failure to follow these warnings could result in unsafe operation, resulting in serious injury or casualty. The safety signal and general I/O signal must be separated.

Warning:


- Inputs and outputs of all safety classes are redundant. It is necessary to isolate the channel so that the safety function is not activated due to signal failure. The safety functionality must be confirmed before installing the robot. The safety functionality should also be checked periodically for abnormalities.
- Initial Safety Configuration

The robot will be shipped with the initial safety configuration set to default, so that the users can use it without further configuration. The initial safety configuration is as follows.

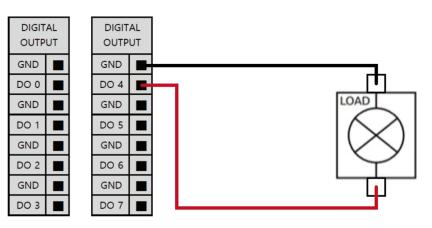
CONFIG			
INPU	JT		
+24V	Ļ		
DI16	L		
+24V	Π		
DI17	Ţ		
EMA1			
EMA2	Π		
EMB1			
EMB2			


■ Safety protection stop and automatic restart

An example of a safety protection device would be a door switch that stops the robot when the door is opened. The figure shows how to configure these features:

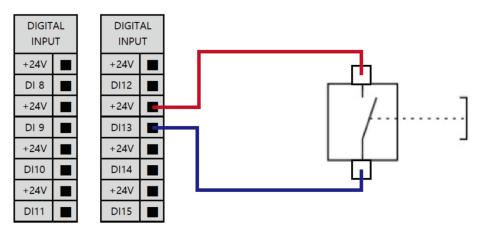
■ Enabling Device Input (Option)

Connect the active device input interface using the 3-position switch. When the position activation switch is in the operating position (middle position), the robot starts moving. If the 3-position activation switch is pressed, the switch is in the inoperative position and the robot arm will not move. Rainbow Robotics does not provide an Enabling Device. An Enabling Device is available as an option if the user needs. To configure the feature, refer to the following configuration:



4.9 GENERAL PURPOSE DIGITAL I/O CONFIGURATION

All Digital I/O can be used as general purpose digital I/O. To use other external equipment with the robot, connect the I/O from the robot control box with the corresponding equipment. The universal digital I/O can be used to configure devices such as relays or PLC systems. In this configuration, the output is always LOW unless the program is running. The following subsections are examples.


■ Electric load control with digital output

The figure below shows a way to control electric load by using the digital output.

■ Control of digital input with a button

The figure below shows a simple way of connecting a button to the digital input.

• Communication with other system or PLC

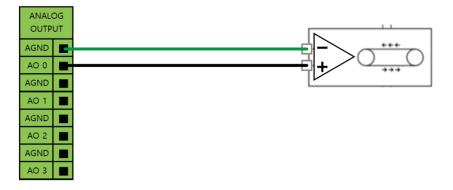
If another other system provides PNP and uses a common ground, the digital I/O can be configured to communicate with the other system. Its connection is shown in the figure below.

DIGITAL INPUT +24V I DI 0 I +24V I DI 1 I +24V I DI 2 I	DIGITAL INPUT +24V I DI 4 I +24V I DI 5 I +24V I DI 6 I	DIGITAL OUTPUT GND I GND I GND I GND I GND I DO 2 I	DIGITAL OUTPUT GND I DO 4 I GND I DO 5 I GND I DO 6 I	Α	В	DIGITAL INPUT +24V I +24V I DI 0 I +24V I +24V I DI 1 I +24V I	DIGITAL INPUT +24V DI 4 +24V DI 5 +24V DI 5 DI 6	DIGITAL OUTPUT GND I DO 0 I GND I GND I GND I DO 2 I	DIGITAL OUTPUT GND I DO 4 I GND I GND I GND I GND I DO 6 I

Warning:

For the details in the technical specification and wire connection, please refer to Appendix D.

4.10 GENERAL PURPOSE ANALOG I/O CONFIGURATION


The following methods are recommended for high reliability.

- Use analog GND closest to I/O.
- Equipment and control box use the same GND. Analog I/O is not isolated from the robot control box.
- Use shielded or twisted-pair cable. Connect to the GND shield on the Power (J12) terminal.

Port	Parameter	Min	Туре	Max	Unit	
Voltage mode Input						
AIx - AG	Voltage	0	_	10	V	
AIx - AG	Resolution	_	16	_	Bit	
Voltage mode Output						
AOx – AG	Voltage	0	_	10	V	
AOx – AG	Resolution	_	16	_	Bit	

Analog output

The analog output can be used to control speed of conveyor. The figure below illustrates a simple demonstration.

Analog input

The figure shown below illustrates a simple connection to an analog sensor. The output value of the analog sensor can be used by the control box as analog input.

LCD Status Display

	🕫 Rainb	iow-Rol	potics	
1				
2				
	8 8	5: 91	d = 01.	4
	3	4		5

- 1. Display Box (1): Displays information about system status
 - : Please Wait (the main PC in the control box is booting up)
 - : Normal Operation (the main PC in the control box is ready)
- 2. Display Box (2): Displays information about robot operation and status.
- 3. Action Icon: Definition : lock (□) or release(□) state, play(□) or stop(□) state, crash(□) or safe(□) state.
- 4. Power Consumption: Indicates the total power consumption in watts (W).
- 5. System Version Information: System version information.

CHAPTER 5. GET STARTED

5.1 CONTROL BOX ON/OFF

Procedure for turning control box On/Off is as follows

■ Stand-type control box On/Off

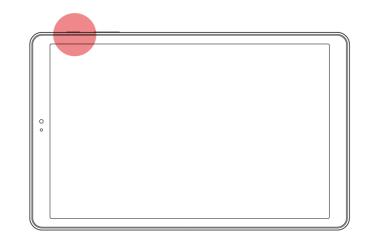
Press the AC power switch at the bottom of the control box to apply AC power.

Press the main power switch at the top of the control box to turn on the main power.

"Please Wait" is displayed in the LCD screen of the control box. This indicates that the control box is being booted.

When the control box is changed to the enabled state, the LCD message is displayed as "Normal Operation".

To turn off the power, press the main power switch during few seconds.

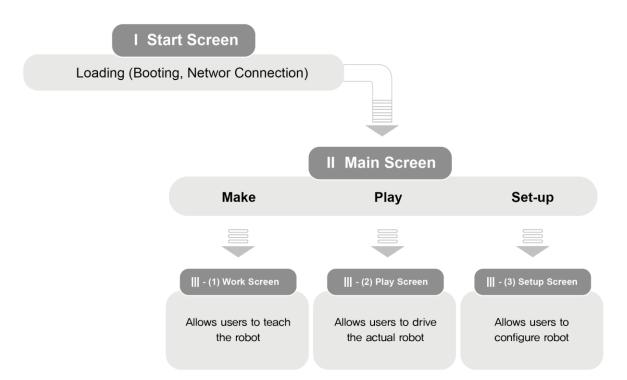


Caution: Control box uses AC 100 to 240V single phase (50 to 60 Hz).

5.2 TEACHING PENDANT/PC ON/OFF

■ For stand-type control box

If the user uses the teaching pendant provided by Rainbow Robotics, the teaching pendant and cover are provided. To turn on the teaching pendant, press the power button on the top left corner.



Caution: Make sure that the teaching pendant is connected to the control box before running the application provided by the Rainbow Robotics. Do not perform unnecessary operations while the system is booting, as it may cause problems with the system.

CHAPTER 6. SOFTWARE OVERVIEW

6.1 UI STRUCTURE

The UI (User Interface) program is divided into three screens as follows. Each section allows the user to enter necessary steps.

6.2 STARTUP SCREEN DISPLAY

Intro

The below image shows the start screen. The start screen will occur while the application is loading its processes.

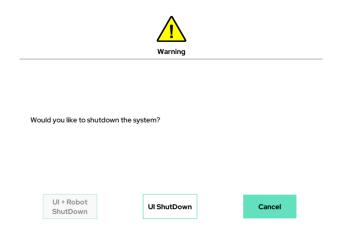
■ Login (Factory-Default login password: 0000)

To set up the password or to enable automatic login, please go to the "Setup-System-Password" menu.

RB Series User Login Password	
Login	

6.3 MAIN SCREEN DISPLAY

The UI has three main menus.


- Make : for programming robot motion and tasks.
- Play : for running motion and tasks pre-programmed in the Make menu.
- Setup : for setting up parameters.

In the main screen, users can create programs for the robot (Make), move the robot (Play), or set settings (Setup) through each relevant menu.

Power Off

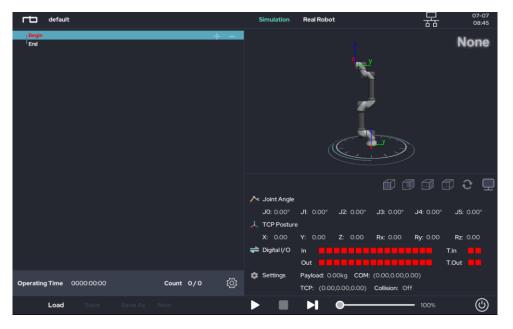
When the power button (bottom right) is pressed, the power off dialog will pop up. If the user presses the UI Shutdown button, the application closes. If the robot is activated and Tablet is connected to the tablet PC, the power of the robot will be turned off as well.

6.4 MAKE

Make

The Make screen is the interactive menu to program the robot. Programming the collaborative robot will also be referred to as "teaching." Teaching the robot requires the use of the icons at the top of the screen. Moving the robot requires the use of icons at the right. Moving the robot by one of these icons will also be referred to as "jogging." Editing the teaching program requires the use of icons at the left.

- Left Icons: Copy & Paste, Save, Delete, Add Comment, etc.
- Right Icons: Jog/Jogging, Move Left/Right/Forward/Backward, etc.
- Middle Icons: Program Functions, etc.
- Bottom Icons: Save/Load, Play, Motion Speed Adjustment, etc.

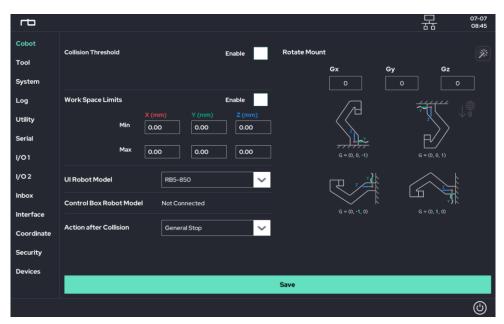


- * For more details about icons and configuration, please refer to Chapter 7.
- * In the Make menu, the robot will not move unless a button is pressed and held. This feature can be removed in Setup-Interface.

6.5 PLAY

Play

The Play screen allows the user to load and run a teaching program. The Play screen only allows for physical movement of the robot (unlike Make, which allows for simulation). A program loaded into the Play screen will repeat the number of times specified in Setup-Interface. The Operating time at the bottom left of the screen shows the time elapsed.



* Please refer to Chapter 8 for more details about Play mode.

6.6 Setup

Setup

The Setup screen allows the user to see/change the robot's default values, such as sensitivity for collision detection, orientation of the robot installation, range of workspace, tool settings, system log, I/O, coordinate system, etc.

* Please refer to Chapter 9 for more details about Setup.

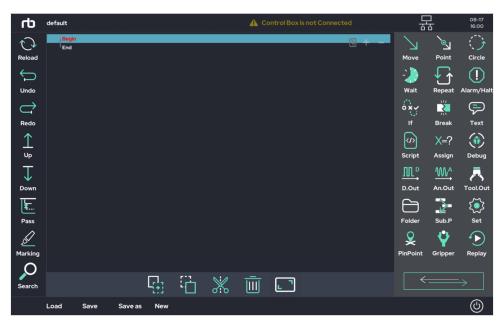
CHAPTER 7. PROGRAMMING GUIDE

7.1 ICONS AND ACTION SCREEN

Description of components in Make screen display

Num	Description					
1	Show the program list in tree form.					
2	Shows the angle of each joint of the robot arm and the Cartesian coordinate position of the TCP.					
3	TCP Jog: can change the Cartesian coordinate position. (base/tool/user defined coordinate system Selectable) Joint: Jog: can change the angle of each joint.					
4	Button to switch to Simulation or Real mode.					
5	Can import saved projects and create new projects.					
6	Starts or stops the program and exists Motion Speed Adjustment Bar.					
\bigcirc	Various editing tools are located, such as Copy/Paste/Annotations.					
8	Can adjust the motion speed of the robot arm (even when the robot is running).					
9	Determines Jog Method – either Smooth Mode or Tick Mode.					

* Teaching: programming RB's motion by means of moving the robot by hand


* TCP (Tool Center Point): The point defined for the tool center point within the robot's base coordinate system. It may also be the origin of the end-effector.

<Basic View Mode>

<Icon Extended View Mode>

<Program-only Mode>

- Description of icons used in teaching (Upper part in Make page)
 - * A detailed description of each function is explained in later chapter

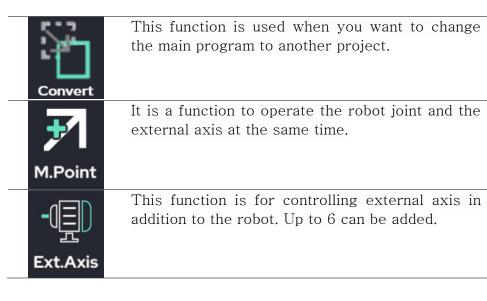
Icon	Description
Move	This icon is used to set motion property of the robot. The core algorithms for seven types of motion properties are pre-programmed. In MoveJ, each joint moves independently to reach a given target joint angle in a given time. In MoveL, the TCP linearly moves to reach a given target position and orientation in a given time. In this motion, each joint angle to move is calculated by built-in algorithms. MoveJB, MoveLB, MovePB, MoveJL, and MoveITPL are advanced motions using MoveJ or MoveL.
Point	This icon is a sub item of Move. It is used to set the target values of motion. In MoveJ and MoveJB, a desired joint angle value can be set. In MoveL, MoveLB, MovePB, MoveJL, and MoveITPL, a desired TCP position (x,y,z) and orientation (Rx,Ry,Rz) can be set in Cartesian coordinates.
Circle	This icon is used to design a circular motion. This motion can be generated as an arc passing through three points given by a user, or a circle defined by the center and the axis of rotation.
- Wait	This icon is used to let the robot pause shortly. The robot will pause for a given time set by a user. With a conditional statement like IF, a user can have the robot pause when a condition is true.
۰×۲ If	This icon is used to create a conditional statement. A user can generate separate motion program branches depending on conditions using If, Else if, and Else.
Switch	This icon is used to create another type of conditional statement. For the Switch statement, a user defines each case.

Repeat	This icon is used to repeat a specific section in the motion program. A user can set a specific number of times to repeat. A user can also repeat indefinitely until a condition becomes false, or repeat indefinitely until a condition becomes true.
Break	This icon will force quit a loop. It is used as a sub item of Repeat.
Halt	This icon ends the program. It is typically used with a conditional statement to force an end to the motion program in a situation.
X=? Assign	This icon is used to declare variables. It has four types; variable, array, point and string. The variable stores a single number, array stores multiple numbers, point stores posture information, and string stores words.
Script	This icon allows a user to program manually. It is typically used when a user-specific calculation and substitution are needed.
Text	This icon allows a user to add a comment or memo to the program.
Folder	This icon bundles the commands of the created program into the sub items of the folder.
Sub.P	This icon allows a user to import other user programs and insert them to the current program. The imported programs cannot be edited in the current program.
1 Pre.P	This icon is used to run a specific command or program only for one time at the beginning of a program.

Thread	This icon allows a user to run a command or program in parallel to main program. Note that motion commands cannot be used in the thread.
(] Alarm	This icon generates a message pop-up during operation. It can be used when a situation requires a confirmation during program execution.
Debug	This icon allows a user to check the current value of variables (which is assigned by 'Assign' action) or parameters. Information is displayed within a pop-up.
کر Set	This icon allows a user to temporarily change the values of parameters located in Setup menu at the current program.
D.Out	This icon is used to control Digital output ports located in the control box. A user can select a port and define its output signal (High, Low, or Bypass)
MA An.Out	This icon is used to generate voltage through an Analog output port located in the control box. Each Analog output can generate a voltage in a range between 0V to 10V.
Tool	This icon is used to specify two digital outputs located in Tool flange. A user can setup the digital output to generate OV, 12V, or 24V.
Gripper	This icon is used when a gripper manufactured in third-party company is attached at the robot. Built-in functions let a user quickly install and use the gripper.
••••••••••••••••••••••••••••••••••••••	This icon is used to send data to the port located in the Tool flange or Control Box via RS485/RS232. Please refer to Setup-serial for protocols.

Socket	This icon is used for socket communication. A maximum of five connections are allowed.
Modbus	This is for ModBus Client function. This icon allows a user to connect to other ModBus server. The program can access to a specific IP address in order to request and receive data. The protocol of the ModBus Server is provided separately in the user manual Appendix.
Conveyor	This icon allows the robot to work as a conveyor system. When the moving speed and direction of the conveyor is defined, the robot follows the conveyor. MoveL, MoveLB, MovePB, MoveITPL and Circle can be programed on top of the conveyor's motion.
Post.P	This icon is used to set up a task after the program ends. Note that motion commands cannot be included in here.
O Template	This function inserts another pre-made program file (teaching file) into the current document in a modifiable form. It is similar to Sub.P, but files added using Sub.P are not modifiable. However, the programs added using the Template function can be modified in the current program.
	This function is used to declare variables (single variables, arrays, point variables, etc.) that you

This function is used to declare variables (single variables, arrays, point variables, etc.) that you want to observe in real time while the program is running. Variables declared in the Monitor function can be viewed by clicking the monitor icon on the right side of the Make / Play page.


PWM (Pulse Width Modulation) output function. Input the frequency and duty ratio of the PWM pulse to send PWM signal through digital output port.

Pattern	This function allows a user to define repetitive behavior. By defining information about the space in which to perform the repetitive actions, as well as defining the repetitive actions to be performed at each location, the robot will perform the same action at every point. Palletizing can be implemented through this function.
PinPoint	This is a function that can be used by storing certain posture/position information as a variable and then referring to (calling) another motion function. However, this function itself does not move to that position.
Jump	This function can jump program flows to a specific location/line. It can return to the starting position, or control program flow discontinuously with a specific line number.
Replay	This function re-play recorded motion through motion recording function. Motion recorded through direct instruction or et cetera can be replayed with J or L type through this function.
Weaving	This is a dedicated feature for weaving operation. Actions such as Move L or Circle set below the weaving action are combined with the weaving options set.
Force	This is a function for force control. You can select the desired direction of force action and coordinate system. The actions included in the lower force control are automatically given the force control function.
ArcWeld	This function is dedicated macro function for arc welding. It is a dedicated function that binds functions which can be implemented through normal D.out or Wait function so that they can be used quickly in macro form. Setting up the arc welder is done in device on the Setup page.

The TCP settings feature is the ability to temporarily change TCP values by recalling presaved TCP values during program execution. User can save TCP values in advance from the Tool List on the Setup page.

Manual.D	Manual direct teaching is a feature that allows user to pause and use direct - teaching while the program is running.
G Code	The G code feature is a feature that you can use if you have placed the G code file in the specified folder. The robot will implement the path to that G code.
Interface	This function is built-in so that other products such as HMI and PLC can be used easily. Users can select the product they want to use and select detailed functions to use the selected product.
I/O Extend	This function is available when adding an I/O expansion module. It is possible to set the digital/analog output of the I/O expansion module. The setup method is the same as the existing D. output and An.output.
User Input	The user input function pauses during program execution to allow users to change the value of a variable/arrangement/point/character/global/ROM by entering it. You can change the value, ignore it, and skip it, depending on your situation.
TouchSen.	It is intended for use in welding applications. Detects the movement of the base material and allows welding to be carried out by reflecting the direction of movement and movement.
Home	It is a function to move the robot to 'Project Home Posture' or 'Joint Zero Posture'. The movement type can be selected from among MoveJ and MoveL.
D.Weld	This function is for using the digital welding machine. After selecting the brand digital welding machine user wants to use, user can easily use the digital welding machine by selecting the mode and option.
E.Thread Call	Unlike the General/Non-Stop thread that runs concurrently with the program, it is a function that calls the event General/Non-Stop thread that is executed when called from the main program.

■ Icon description for editing (Left side in Make screen)

Icon	Description
Reload	It recalls the currently open file. ※ If you press Reload button without pressing Save button, you will be able to blow up the last saved file, so be careful.
Undo	It reverses your last action. You can do up to 50 times.
Redo	It reverses your last Undo. You can do up to 50 times.
	It can raise the command one by one.
↓ Down	It can lower the command one step at a time.
Pass	This is Annotation function. It prevents the selected command from running. Annotated commands exist in the program but not executed
Marking	It can mark the highlight (marking) in the desired program line. Therefore, you can underline important program lines.
Search	This is a function to search for functions used within the program. However, you can only search in English.
E:	It can copy the selected command and you can the copied command to a different location.

85

Ц.	It can paste the copied or cut command into the selected location.
\gg	It can cut the selected command. This command can be pasted to a different location.
	It can delete the selected command.
_ 7	It can change edit mode to zoom mode.

■ Jog and other utilities (Right side of Make screen)

아이콘	설명
لا سی لا Global	It can move TCP's position relative to a global coordinate system fixed to the base.
	It can move the position of TCP based on the local coordinate system (tool coordinate system) fixed to TCP.
لا صح لا صح User	It can move the position of TCP based on the user-defined coordinate system (User Coordinate).
لي لي Joint	It can allow to move each joint of the robot arm separately
Utility	This is a collection of special features which can view status and set-up values such as I/O status information of the system, user- coordinate Setting information and current/temperature information of the robot.
کرکک Setting	This is a collection of settings such as User coordinate system settings, automatic TCP find, and other easy-to-use settings with a Jog. These settings can also be set in the Setup menu by default.
Monitor	It is a window for real-time observation of the values selected variables through the Monitor function. In addition to the selected variables, system variables that need to be checked frequently are also displayed.
ر آلی Cli Mode	This function allows the user to select the UI mode. Users can select UI mode according to their level and environment.

■ System function button

гЪ	This icon is used to move to home screen & another page. It is located in the top left.
\bigcirc	This icon is used to power off the UI. When the tablet PC is connected to the robot, the robot will also be turned off. It is located in the bottom right. Screen Lock function is included in here.

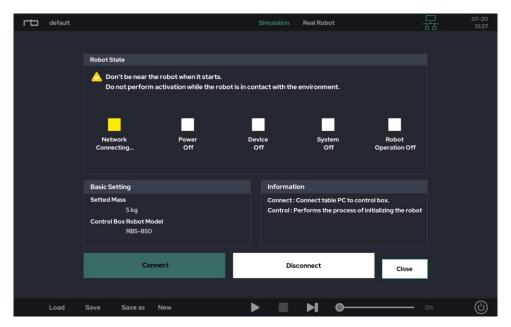
7.2 CREATE TEACHING ENVIRONMENT

Robot teaching (programming) is available only in the Make screen. Please open the Make screen from the Play or Setup screen via the red button located at the top of the UI. It is also possible to move to the Make screen from the Home screen.

■ Connect Tablet PC to Control Box

This icon is in the bottom left of each screen. The robot control box and tablet PC must be connected before teaching. When this icon is pressed, the following screen is displayed.

Ę	default			🛕 Co	ntrol Box is not Connected	[07-20	
		Robot State						
		Don't be near the robot when it starts. Do not perform activation while the robot is in contact with the environment.						
		Network Disconnected	Power Off	Device Off	System Off	Robot Operation Off		
		Basic Setting		Int	formation			
		Setted Mass			nnect : Connect table PC to contro			
		5 kg Control Box Robot Model RB5-850		Co	ntrol : Performs the process of init	ializing the robot		
		Connect			Disconnect	Close		
	Load	Save Save as New					٩)


Press the 'Connect' button to link the tablet PC to the robot control box.

• 'Connect' button: Will connects the tablet PC to the robot control box.


Caution:

 Make sure that the control box is turned on and that the emergency stop switch is turned off. If the control box is not on, the light beneath 'Device Off' will turn red. The figure below shows a display when the tablet PC and control box are being connected.

'Network Connecting' lights yellow when the tablet PC is trying to connect to the control box.

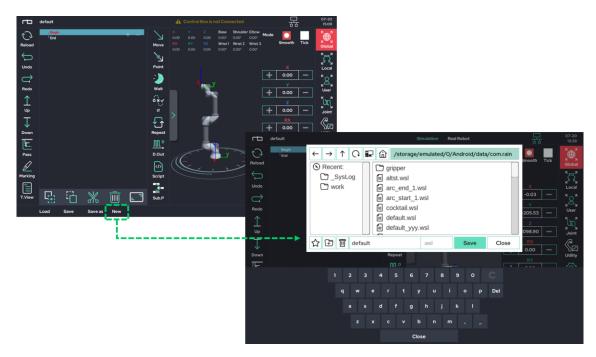
'Network Connected' becomes blue when the table PC and control box are connected properly. The 'Control' button is also activated once more.

After 'Network Connected', press the 'Control' button to activate the robot control system.

• 'Control' button: Will initialize the robot arm for operation.

During initialization, the mechanical joint brake is released. Unlocking the joints will generate a clicking sound.

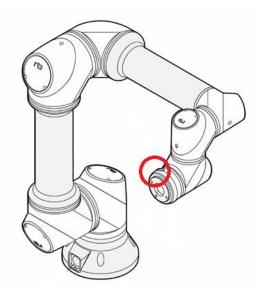
default Simulation Real Robot


	Robot State						
	Don't be near the Do not perform a Bobot is Activate						
	Network Connected	Power On	Device On	System On	Robot Operation On		
	Basic Setting		Information				
	Setted Mass 5 kg Control Box Robot Model RB5-850		Connect : Connect table PC to control box. Control : Performs the process of initializing the robot				
	Powero	iown	Dis	connect	Close		
Load	Save Save as I	New	•	▶ •	0%	e e	

* When 'Robot Operation On' is still in red, please follow the instructions contained within the message popup.

All lights become blue when the robot is ready.

■ Create New Project


Press the 'New' button at the bottom of the screen to create a new project and can give the file a name.

The default name of a new project is 'default'. Please type a name for the new project and press the 'Save' button in the dialog. Note that the new project is not created if the 'Save' button is not clicked.

7.3 TEACHING (PROGRAMMING)

- Ways to Move the Robot
 - Direct-Teaching: When a user manually rotates each joint to change the pose of the robot.
 - Jogging: When a user uses the jog buttons in the UI to move the robot.
- Direct-teaching

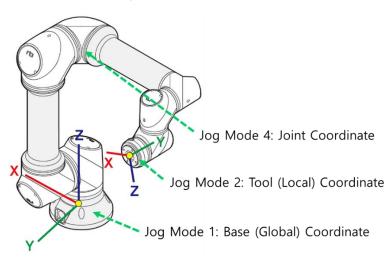
The 'Gravity Compensation' algorithm allows the robot to keep its pose when set by a user. For 'Direct-Teaching', a user must press and hold the mechanical button located on the tool flange. Pressing this button allows each joint to move freely. The red circle in the figure above indicates the location of the button.

Warning:

- 1) 'Direct-Teaching' can be used only when the robot is initialized and activated.
- The load value in 'Setup-Tool' should be set prior to using 'Direct-Teaching' when a tool is installed at the tool flange. Without a proper value of the load, 'Direct-Teaching' may not work properly.
- 3) In 'Setup-Interface', the sensitivity of joint reaction can be adjusted.
- 4) Please ensure that the robot is not moving before using 'Direct-Teaching'.

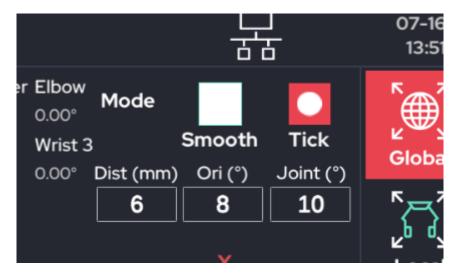
There are four modes of jogging.

Global Mode 1: TCP Movement in the Cartesian coordinate system with respect to the base (global) frame.


Local Mode 2: TCP Movement in the Cartesian coordinate system with respect to the tool (local) frame.

User Mode 3: TCP Movement in the Cartesian coordinate system with respect to the user coordinate frame.

Joint Mode 4: Angular joint movement.

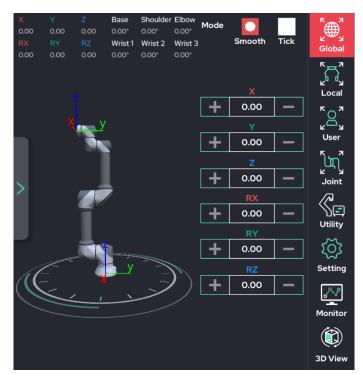


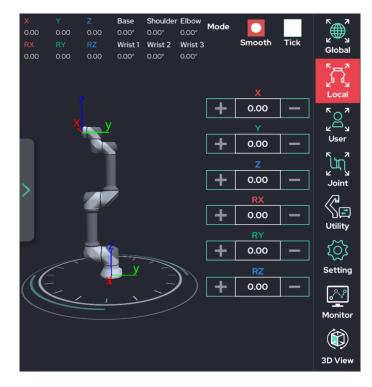
There two ways to control jogging:

- Smooth: Use for continuous motion of the robot. When the '+' or the '-' button is pressed and held, the robot moves continuously until the button is released.
- Tick: Use for discontinuous motion of the robot. The robot will move a specific amount as defined by the user each button click.

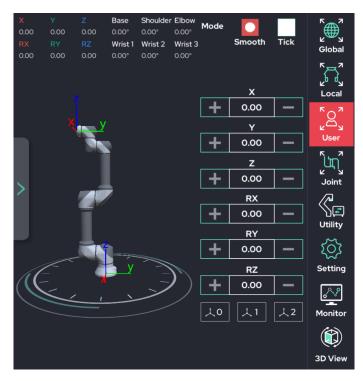
* The control method for jogging can be selected via a toggle button located in the top right in 'Make' screen.

* In 'Setup-Interface', a user can specify the amount of movement for each 'Tick' button press. Or it can be directly changed in pop-up window as below.




Warning:

- 1) Make sure that there are no obstacles or people in the robot's workspace before the use of jogging.
- 2) It is highly recommended to use the 'Safety Slider' feature in 'Setup-Interface'. This feature is activated as a factory default.


<Jog Mode 1: TCP jog w/ Global coordinate>

< Jog Mode 2: TCP jog w/ Local coordinate>

< Jog Mode 3: TCP jog w/ User coordinate>

< Jog Mode 4: Joint jog w/ joint coordinates>

■ Real Robot and Simulation Modes

Two Modes are available for testing the robot's movement.

• Simulation Mode:

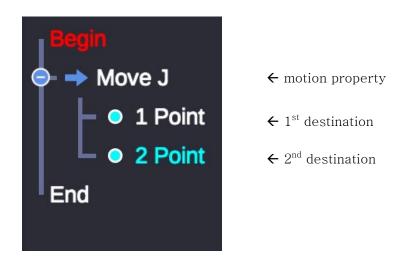
Allows the user to virtually move the robot arm on the UI screen without moving the actual robot.

It is recommended to run simulation mode first for safety reasons before teaching a new motion.

• Real Robot Mode:

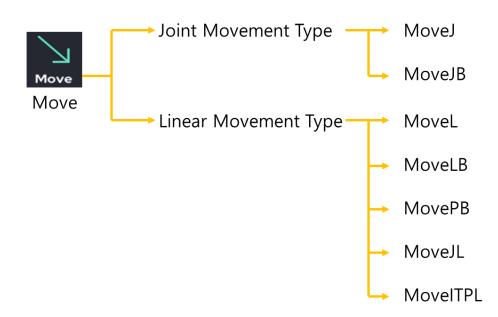
Drives the real robot as displayed on the UI screen.

Warning:


- 1) Real Robot mode is only available when the robot is connected and activated.
- 2) Simulation mode only requires the provided tablet and the control box. It does not require the robot arm.
- 3) When using Real Robot mode, please make sure that the nearby environment is clear & safe before operating, as the robot will move.

Teaching Robot Movement

The basic robot teaching functions are Move Move and Point Point. Both icons are on the top bar when using the Make screen.


- **Move**: Defines motion property. Generates a movement command for the robot arm. Requires points to be defined.
- **Point:** A sub-function of **Move**. Defines a destination position for each movement.

After using the **Move** and **Point** functions in an empty program, the script field in the UI will look like the following.

Details on each of the Move and Point functions follow on the pages below.

■ Move Function

Move sets the robot arm's motion properties. The two primary types of movements are **Joint** and **Linear**. These types are further broken down into commands, as shown in the figure above.

■ Joint Movement Commands

The Joint Movement Commands generate movement by setting the angular value of each individual joint (in degrees).

\triangleright MoveJ (Move Joint) :

Sets each joint angle to the values contained within the target **Point**. Note: The movement speeds for all joints are slowed relative to the joint that requires the most movement time.

\triangleright MoveJB (Move Joint Blend) :

Starting from the initial arm configuration, the arm will move smoothly between each **Point** without stopping by using the Move J method.

Linear Movement Commands

The Linear Movement Commands generate movement by setting the position of the TCP in the Cartesian coordinate system. These commands use Cartesian coordinates (x,y,z coordinate values and rotations) as the target values for the movement.

\triangleright MoveL (Move Linear) :

Moves the TCP linearly (using x, y, and z) from the current position to the position contained within the target **Point** (in mm). Will also rotate the TCP (using Rx, Ry, and Rz) based on the orientation contained within the target **Point** (in degrees).

▷ MoveLB (Move Linear Blend) :

Starting from the initial arm configuration, the arm will move smoothly between each **Point** without stopping by using the Move L method. This method will generate an arc-shaped path.

For each **Point**, the user must specify a Blend Radius. This Blend Radius determines how far away the TCP will be from the **Point** when moving along the path.

If the Blend Radius is set to 0, the path will be the same as only using the Move L method.

The Blend Radius has a maximum value, which is half of the distance between the initial **Point** and the destination **Point**. This ensures that the arm will maintain a blended movement.

Move LB has two modes, Constant and Intended.

- Constant mode maintains the first **Point's** TCP orientation (Rx, Ry, and Rz) during movement, only changing the tool's position (x, y, and z) through the movements.
- Intended mode changes both the orientation and position the TCP as the arm moves.

▷ MovePB (Move Point Blend) :

MovePB is similar to MoveLB, but it is more universally available. For each **Point**, the user can set the blend amount in either distance or percentage (%). The speed can also be set separately for each point.

▷ MoveJL (Move J with Linear Input) :

Like MoveL, the Cartesian value of the target point is used as input. However, instead of going straight to the point, it uses MoveJ's method. When the Cartesian coordinate system input is received, it is converted into the target joint angle through inverse kinematics and inputted again to MoveJ.

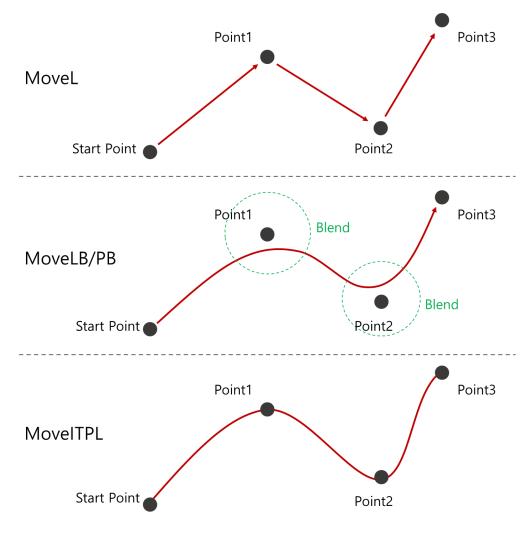
\triangleright MoveITPL (Move Interpolation) :

Starting from the starting point (the current position), move smoothly between the points without any stops using the Move L method.

MoveLB or PB blends across (blend) each waypoint, but MoveITPL moves along the trajectory exactly past each waypoint. So, there is no separate blend setting.

MoveITPL has two modes. Constant mode is to move the tool orientation while maintaining the starting point value. Intended mode is to change the orientation of each tool.

The speed can be set separately for each intermediate waypoint.


■ Difference between MoveJ and MoveL

MoveJ does not consider the movement trajectory of the terminal (TCP). It is an operation that only uses the joint angle information of the starting point and the joint angle of the target point. The driving speed of other joints are adjusted to the joints that require the most driving time.

MoveL is a mode that uses inverse kinematics to move the trajectory of the terminal (TCP) linearly from the starting point to the target point. 6 Cartesian coordinate values (x, y, z, Rx, Ry, Rz) are the inputs for the target point value.

■ Difference between MoveL, MoveLB/PB, and MoveITPL

MoveL moves in a straight, linear path between the start and destination points. The arm will arrive at each sequential arrival Point, stop, and then continue to the next Point.

MoveLB/PB starts at the initial Point, uses each intermediate Point as a waypoint, then stops at the final Point. The arm will not stop at the specified waypoints. Instead, it will arc around each point according to the blend distance, and then continue without stopping.

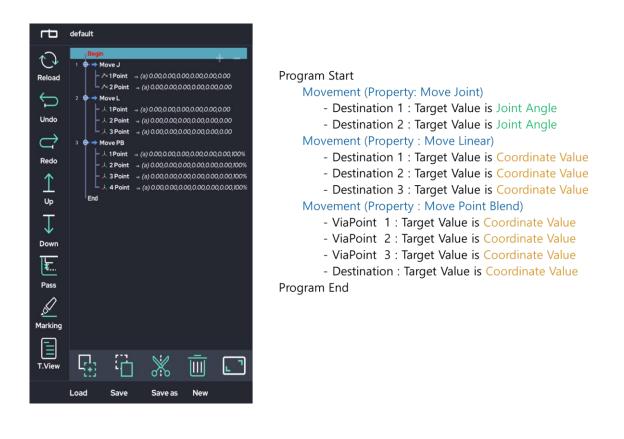
MoveITPL, the points other than the arrival point move to the waypoint, creating a trajectory that passes exactly through the waypoint. The trajectory is created without stopping and a separate speed setting is possible for each waypoint.

Warning:

- The five linear motion commands (MoveL, MoveLB, MovePB, MoveJL, MoveITPL) move the robot using inverse kinematics calculations. Therefore, movement may be limited in singularity positions where inverse kinematics calculations are not possible.
- 2) Certain joints may move faster or be restricted in motion while in the dead zone of the robot. Further information about dead zones can be found in Section 1.7.

■ Changing Move Function Commands

When the Move Function is used for the first time in a program, the program tree will be created as shown below. By default, the Move function is set to MoveJ.



Click MoveJ in order to change the Move command type. A popup will appear as shown below.

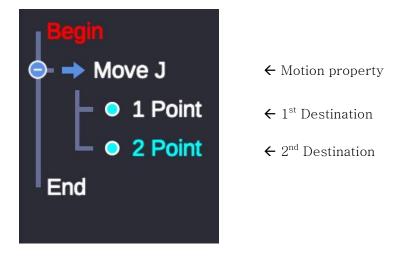
	Move						
Add Point			Add				
Туре		Option					
Move J	\sim	Constant	\sim				
Move J							
Move L							
Move JB							
Move LB							
Move PB							
Move JL							
Move ITPL							
Move J (Move Joint) - Use joint angle value (JO ~ J5) as i - Change the angle of each joint to i - Each joint is driven to the target va	the ta		TCP.				
Set		Close					

Select the desired movement type and click close to change the movement type.

An example of a teaching program is shown below.

MoveJ, MoveJB

The arm moves to the joint angle configuration contained within each Point. Each angle value is relative to the base position.


Since the robot arm consists of six joints, the MoveJ and MoveJB functions will move all six joints based on the configuration contained within each Point.

MoveL, MoveLB, MovePB, MoveJL, MoveITPL

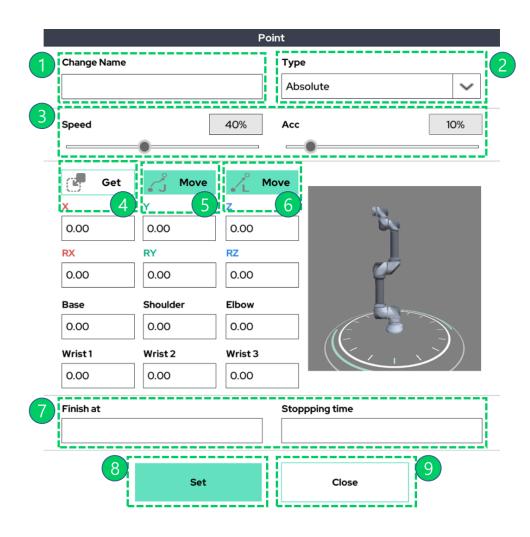
The arm moves relative to or directly to a target TCP position contained within each Point. Each Point determines a target location within the Cartesian coordinate system for the TCP to pass through.

Since the Cartesian coordinate system consists of six values (x, y, z, Rx, Ry, Rz), all six values will need to be set as subitems of MoveL, MoveLB, MovePB, MoveJL, and MoveITPL.

Point Function

As explained earlier, the Point function is a sub-function of the Move function. Move specifies the properties of the motion, whereas Point is responsible for setting the target position.

Note: In the Point function, the target value will vary depending on the command type of the Move function.


▶ Joint Movement Type(MoveJ, MoveJB) Point :

Contains the target joint angle values (in degrees) for all six joints

▶ Linear Movement Type(MoveL, MoveLB, MovePB, MoveJL, MoveITPL) Point :

Contains the target destination point (in Cartesian coordinates) for the TCP.

When a user taps on a Point in the program tree, the Point function popup window will appear. The window contains the following fields:

Each area is described in the table below.

Section	Description
٢	Sets the name of the point (not required). After setting the name, the location information of the point can be used as a variable later.
2	 Allows a user to select the setting type of the point function. The Joint Move has three setting options. The Linear Move has four setting options. The default type when creating a Point is 'Absolute'.
3	Sets the speed and acceleration of arm movements to the location
4	 Updates the Point information with the current robot position. After moving the robot to the desired position/posture, press Get to store the information. To save the Point at the current position/posture, press the Set button (Section 7). Depending on the Point type (Section 2), the Get button may or may not supported.
(5)	 Moves the arm to the specified Point. Must hold down the button to move the arm to the saved position. Note: the movement is a joint movement type. When the movement is completed, a pop-up message will be shown. Depending on the Point type (Section 2), button may or may not supported.
6	 Moves the arm to the specified Point. Must hold down the button to move the arm to the saved position. Note: the movement is a linear movement type. When the movement is completed, a pop-up message will be shown. Depending on the Point type (Section 2), button may or may not supported.
Ø	 Specify an escape condition (Finish At) and an escape time (Stopping Time) for the action. Not a required input. If the input is left blank, the operation will end normally after reaching the target point. Once the escape condition is satisfied, the operation stops according to the escape time and continues to the next action. The minimum escape time is 0 seconds.
8	Saves the changed settings.
9	Closes the Settings window. Will not save user input without pressing the Set button (Section 7).

* An example using the Get function (Section 4) is shown below.

1. Use the jog / direct teach function to move to the desired posture / position

 $2.\ {\rm Get\ current\ posture\ /\ location\ information\ by\ pressing\ {\rm Get\ button\ }}$

			Point	
	Change Name		Туре	-
			Absolute	/
	Speed		40% Acc 10%	
		•		
Click	Get	J Move	C Move	
	x	Y	Z	
	-0.18	-205.53	1098.90	
	RX	RY	RZ	
	0.00	-0.02	-0.02	
	Base	Shoulder	Elbow	
	-0.01	0.00	-0.01	
	Wrist 1	Wrist 2	Wrist 3	
	-0.01	0.00	0.00	
	Finish at		Stoppping time	
		Set	Close	

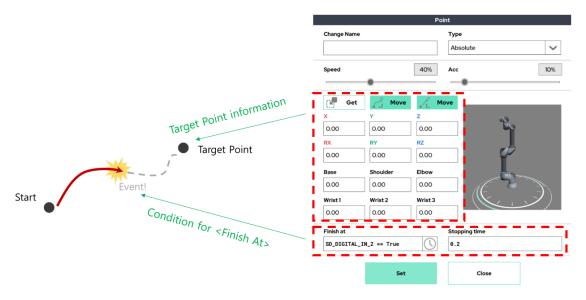
3. Save after confirming reflection

		Point	t
Change Name			Type Absolute
Speed	•	40%	Acc 10%
Get	Move	Mov	/e
X	Y	Z	
487.39	-110.80	706.23	
RX	RY	RZ	
0.00	0.01	90.00	Č
Base	Shoulder	Elbow	
0.00	0.00	90.00	
Wrist1	Wrist 2	Wrist 3	
-90.00	90.00	0.00	
Finish at			Stoppping time
Click	Set		Close
- i			

- * An example using the Finish at/Stopping time option (Section 6) is shown below.
 - When not using the Finish at function

(If left blank)

End of motion after arrival to original set target point, execute next command



■ When using the Finish at function

(When entering a specific conditional expression)

Even if the target point is not reached, the operation is terminated when the Finish at condition occurs and the next command is executed.

If condition does not occur during operation, execute the next command after reaching the target point normally.

The following setting options exist for each type of move function.

		Joint Move Type's sub Point
	Absolute	 >Sets the Points for MoveJ by using fixed, user defined joint angles >Requires the user to set the desired posture/joint angle configuration through the Get function.
Option	Variable	 >Sets the Points for MoveJ by using one of several methods. >Allows the user to set the desired posture/joint angle configuration through the Get function. >The user can also change a joint angle by setting it to a variable or a mathematical operation.
	Relative	 >Sets the Points for MoveJ by changing the joint angles relative to the previous angle position. >If a joint movement is set to zero, then that joint will not move. If all are set to zero, then the robot will not move. >The user can also change a joint angle by entering a variable or mathematical operation.

>> continue

		Linear Move Type's sub Point
		>Sets the Points for MoveL by using fixed, user defined Cartesian coordinate values
	Absolute	>After moving the robot's TCP, Cartesian coordinate values through the Get function can be set
		>Note: The default Cartesian coordinate system for the Absolute Point Type is the base coordinate system of the robot arm (manufacturer's default coordinate system).
		>Sets the Points for MoveL by using one of several methods. target Cartesian coordinate value.
	Variable	>Allows the user to set the Points for MoveL by using fixed, user defined Cartesian coordinate values
		>The user can also change the TCP Point by setting it to a variable or a mathematical operation.
		>Sets the Points for MoveL by setting the relative distance / offset from the previous Point.
		>The user can also choose a user defined Reference Point from which to move. The default value is PT_LAST_TCP, which indicates the last arrival point.
Option	Relative	>In Reference Frame, the user can specify which coordinate system use for relative movement. The default value is Frame_Base, which represents the base coordinate system of the robot arm. The user can choose changes to the user coordinate system or the tool's local coordinate system.
		>In addition, the user can set a point by using a variable or a mathematical operation.
		>Similar to Variable, but sets a target point based on a user-defined coordinate system.
		>Allows the user to select the user coordinate system as a reference by setting the Reference Frame.
	User Coordinate	>Select the desired reference coordinate system and use the Get function to automatically enter the robot's pose / position information based on the selected coordinate system.
		>For example, if the user's coordinate system 0 is selected and 0 is entered in all Cartesian coordinate values, TCP moves to the origin of the user coordinate system.
		>In addition, the user can set a point by using a variable or a mathematical operation.
		115


The figure below shows each different type of Point as it displays in the UI.

		Point	
Change Name		Type Absolute	1
Speed	•	40% Acc 10%	
Get Get	Move	<u> </u>	
× 0.00	Y 0.00	z 0.00	
RX	RY	RZ	
0.00	0.00	0.00	
Base	Shoulder	Elbow	
0.00	0.00	0.00	
Wrist1	Wrist 2	Wrist 3	
0.00	0.00	0.00	
Finish at		Stoppping time	
	Set	Close	

▶ Joint Type - Absolute point

- ① Absolute Option point
- 0 The robot's posture/angle value is saved through Get button.

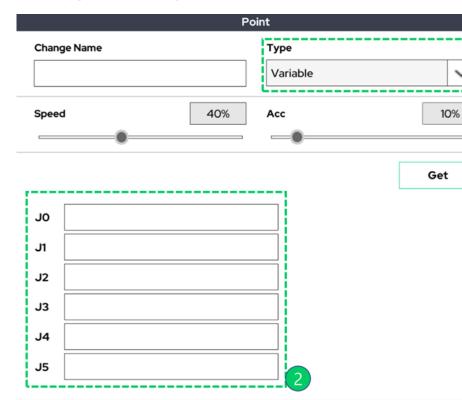
▶ Joint Type - Variable point

① Variable Option point.

② Allows the user to enter the joint angle for the target posture or enter the parameterized information as an equation.

▶ Joint Type - Relative point

		Po	pint	
Chang	je Name		Туре	
			Relative	~
Speed	1	40%	Acc	10%
		•		
∆ J0	o			
∆J1	0			
∆ J2	0			
∆ J3	o			
∆ J4	o			
∆ J5	o			
			2	
Finish	at		Stoppping time	
		Set	Close	


① Relative Option point

② Allows the user to enter how much each joint should move relative to the previous joint angle. All angles are in degrees. In addition, it allows the user to enter parameterized information or formulas. ▶ Linear Type - Absolute point

		Po	int	
Change Name			Type Absolute	~
Speed		40%	Acc	10%
Get	J Move	, M	ove	
X	Y	Z	2	
0.00	0.00	0.00	N	
RX	RY	RZ		
0.00	0.00	0.00	Q7	
Base	Shoulder	Elbow		
0.00	0.00	0.00		
Wrist 1	Wrist 2	Wrist 3		7)
0.00	0.00	0.00	2	
Finish at			Stoppping time	
L			L	
	Set		Close	

1 Absolute Option point

② Allows the user to save a posture/position by using the Get/Save button. The reference coordinate system of the Cartesian coordinate system value is the robot base coordinate system.

▶ Linear Type - Variable point

Finish at Stoppping time Set Close

① Variable Option point

② Allows the user to enter the target Cartesian coordinate values. The user can also enter parameterized information as formulas. The reference coordinate system of the set Cartesian coordinate values is the base coordinate system of the robot arm.

▶ Linear Type - Relative point

			Point	
Chang	ge Name		Туре	
			Relative	~
Speed	1	40%	Acc	10%
			Reference P	oint
∆X	0		PT_LAST_T	CP 🗸
ΔY	0		Reference C	oordinate
∆z	0		FRAME_BAS	SE 🗸 🗸
∆RX	0			
∆RY	0			
∆RZ	0		2	
Finish	at		Stoppping time	

① Relative Option point

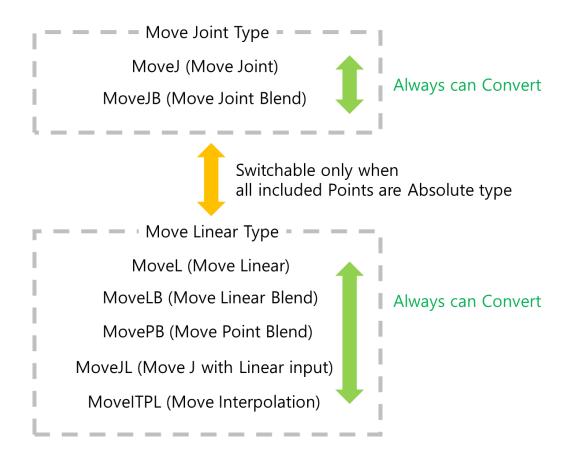
2 Requires the user to enter the distance/angle offset relative to the reference point. Also allows users to enter variable information.

③ Allows a user to select a user defined point from which to move. The default value is PT_LAST_TCP, which indicates the last arrival point.

④ Chooses a coordinate system to specify relative movement. The default value is Frame_Base, which represents the base coordinate system of the robot arm. The user is also able to choose the user coordinate system or the tool's local coordinate system.

- Point Туре Change Name **User Coordinate** 40% 10% Speed Acc Get х **Reference** Coordinate 3 Υ COORD_USER_0 z RX RY RZ 2 Finish at Stoppping time Set Close
- ▶ Linear Type User Coordinate point

- ① User Coordinate Option point.
- ② The User Coordinate Option is similar to Variable, but it allows the user to set the target point based on a previously defined user coordinate system. Users can also enter variable information.
- ③ Selection box for the user coordinate system that the user would like to use as a reference.
- ④ The Get button will load in the robot's current posture/position information based on the selected coordinate system.


Warning:

- 1) A user coordinate system can be set through the Coordinate menu in the Setup screen or by using the Setting function in the Make screen.
- 2) Up to 3 user coordinate systems can be set and used.
- 3) The factory default user coordinate system is the same coordinate system as the robot base coordinate system.

Changing Movement Properties

The following conditions apply when changing the action properties (type of move) of a configured action.

- Switching in the same series can be done without any restrictions.
- Switching to another types (Move Joint types-> Move Linear types / Move Linear types-> Move joint types), can be done only when the type (option) of Point function is used as Absolute.

■ Example of Basic Program Creation

The following is an example of creating and running a simple program based on the above Move and Point functions.

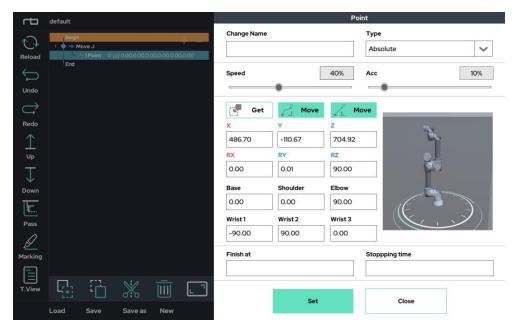
[Step 1]

Create a new project. In this case, the name of the project is 'test'.

[Step 2]

Click the Move function to add a Move command to the program tree. The default command will be MoveJ. A Point function will also be added to the tree as shown below.

[Step 3]


Using the Jog button, move the robot to its intended position. In this example, the robot was moved to the following joint angle: [Base:0', Shoulder:0', Elbow:90', Wrist1:-90', Wrist2:90', Wrist3:0'].

Click on a Point in the program tree to display the Point setting popup window as shown below.

гЪ	default								P	Point			
Reload) 0.00.0.00,00	00.0.00.00	0.00	Chang	e Name			Abs	olute		~
Ç	End					Speed			40%	Acc			10%
Undo						G	Get	Move	2	Move			
Redo						X		Y	Z			-	
Î						-0.03		-205.40	1096.9	0		19	
Up						RX		RY	RZ				
\mathbf{T}						0.00		0.00	-0.01			Ŷ	
Down						Base		Shoulder	Elbow			-	
<u>k</u>						0.00		0.00	0.00		I.C.		
Pass						Wrist 1		Wrist 2	Wrist 3				シ)
						0.00		0.00	0.00				
Marking						Finish	at		1	Stop	pping time		
T.View	5		\gg	Ū				Set			Close		
	Load	Save	Save as	New							51050		

[Step 4]

In the Point popup window, click the Get button to update the fields with the current robot posture/angles. Press Set to save this Point.

[Step 5]

гЪ test_ Simul Real Robot 0 Move Reload Ś `°J Point + 487.39 Wait -110.80 o ¥ Y If 706.23 + ſ + 0.00 Repeat ₽ + D.Out 90.00 </>
Script

Sub.P

After saving the point, the UI will look as follows.

New

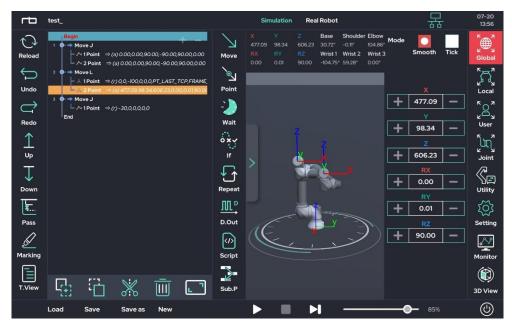
 \mathbb{X}

Save as

L 7

[Step 6]

T.View


5

Load

-

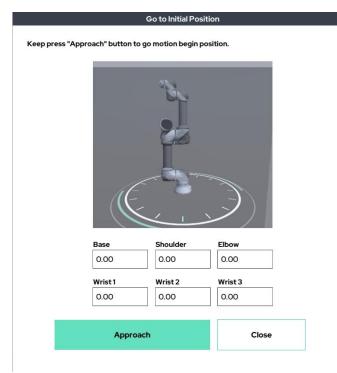
Save

Repeat steps 1 - 4 several times to teach the robot the desired motion. Our completed example program will look like the following.

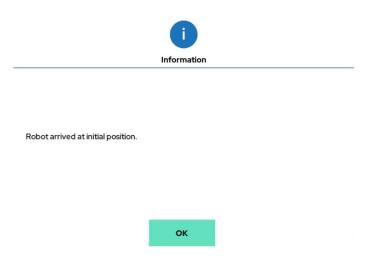
() Utility

ស្ថ័រ

etting


~

3D View

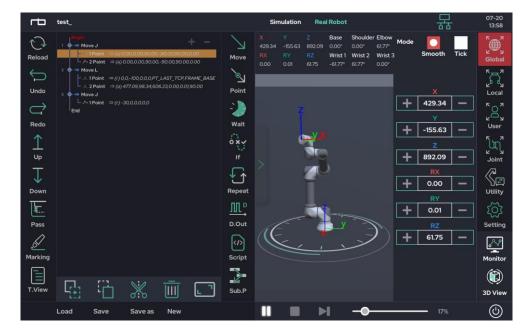

[Step 7]

After the program is finished, run it on the work screen by pressing the play (▷) button. To run the movements using the simulation arm, use the Simulation mode. To run the movements using the real robot arm, use Real Robot mode.

After clicking the play button (\triangleright), the robot will move to its initial position as shown below.



By holding down the Approach button, the robot arm will move to the initial position for the program. Once the robot reaches its starting position, a popup message will confirm to the user that the robot has reached its starting position.



[Step 8]

After receiving the popup in Step 7, the program is ready to run. Click the play button at the bottom again to run the program.

The image below shows the program running.

Warning:

- 1) The Point that the robot is current moving towards will be displayed as yellow in the program tree.
- Initial Movement Position

The initial position can be modified in the Begin section of the program. Before running a program that contains movement, the robot must return to the initial position.

The initial position can be changed by the following way.

1. Move the robot to the desired starting position using either the Jog or teaching button

2. Click Begin in the Program Tree to open the Begin menu

3. Click the Get button to record the current posture, then click the Set button to save the position

Base Shoulder Elbow 0.00 0.00 0.00 Wrist 1 Wrist 2 Wrist 3 0.00 0.00 0.00 Get Move	0.00 0.00 Wrist 1 Wrist 2 0.00 0.00 Get Move Posture saved in Begin is the initial posture applied when the program is run using Set Close			Begin	1/	
Wrist1 Wrist2 Wrist3 0.00 0.00 0.00 Get Move	Wrist 1 Wrist 2 0.00 0.00 Get Move Posture saved in Begin is the initial posture applied when the program is run using Set Close	Base	Shoulder	Elbow		
0.00 0.00 0.00 Get Move	0.00 0.00 Get Move Posture saved in Begin is the initial posture applied when the program is run using Set Close	0.00	0.00	0.00	1 Sta	2
0.00 0.00 Get Move	0.00 0.00 Get Move	Wrist1	Wrist 2	Wrist 3		ž
	Posture saved in Begin is the initial posture applied when the program is run using				N	
	Posture saved in Begin is the initial posture applied when the program is run using		·			
	Posture saved in Begin is the initial posture applied when the program is run using	Ge	et	Move	E.	
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close					
Posture saved in Begin is the initial posture applied when the program is run using	Set Close	D	D		1 11 · · · · ·	
		Posture saved in	Begin is the initia	l posture applied	when the program is run i	using Tabl
Set Close			Set		Close	
		rning				

Warning:

1) When the program is first created, the default starting angles will all be set to zero.

■ Collision detection during operation

The RB Series has two built-in collision detection functions:

- External Collision Detection (Environment-Collision Detection)
- Internal Collision Detection (Self-Collision Detection)

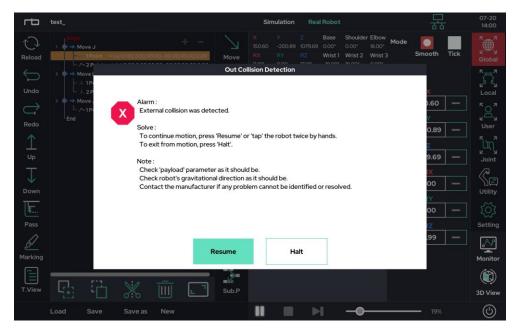
< External Collision >

< Internal Collision >

• External Collision (Environment Collision Detection)

-Detects unplanned external collisions

-Detects unexpected collisions with the environment, including people


-Collision sensitivity can be changed in the Setup

-The user can change the collision sensitivity in real time while the program is running through the Set function.

-For accurate collision detection, the load / center of mass of the tool should be set accurately

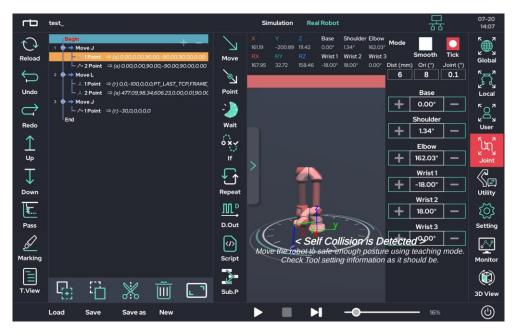
-When operating with high sensitivity collision detection setting, a regular motion could be recognized as a collision due to the sudden acceleration / deceleration of the robot.

If the robot arm detects an external collision while in real mode, the following pop-up will appear.

To continue, choose one of the two options:

- Resume: Checks the status and continues robot operation
- Halt: Exits the program

Alternatively, tap (hit) on the robot arm twice to continue the operation. This will perform the same function as the Resume button.


• Internal Collision Detection

- Occurs when the robot predicts that it will collide with itself.

- If the robot extends beyond the preset Workspace limits, it will stop by itself. The setup for the surrounding environment area is done in the Setup screen.

- Users can also set a virtual box for collision detection. This will cause the robot to stop itself if either the virtual box is expected to collide with itself or it goes out of the Workspace. The virtual box is configured in the Setup-Tool.

The image below shows a situation where the user caused the robot to crash into itself. Just before colliding into itself, the robot will stop, prompting the UI to display a warning in red.

The image below shows a situation where the robot is about to leave the user-defined Workspace. Just before leaving the Workspace, the robot will stop, prompting the UI to display a warning in red.

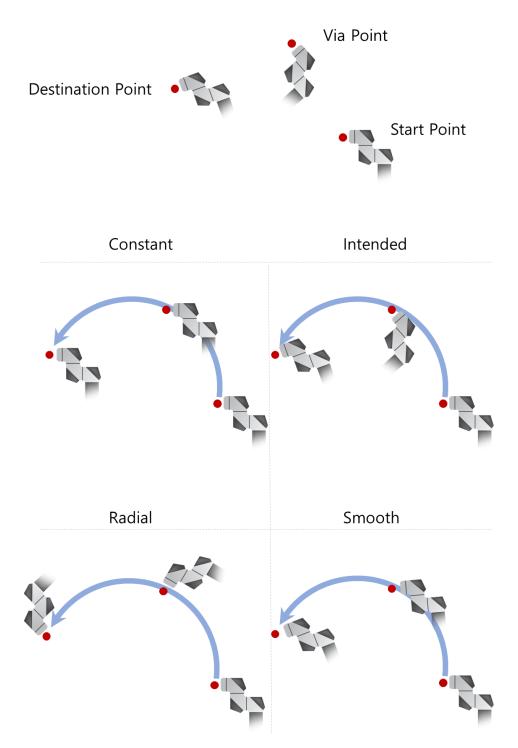
The image below shows a situation where the virtual collision box set up by the user detects / predicts a collision. The robot will stop, prompting the UI to display a warning in red.

If the robot stops during operation in real mode, please move the robot arm to a safe position before continuing work.

7.4 TEACHING ICONS AND DESCRIPTION

In the previous section 6.3, only the basic teaching functions (Move and Point functions) are described. This section is dedicated to the other teaching functions.

■ Circle Function :

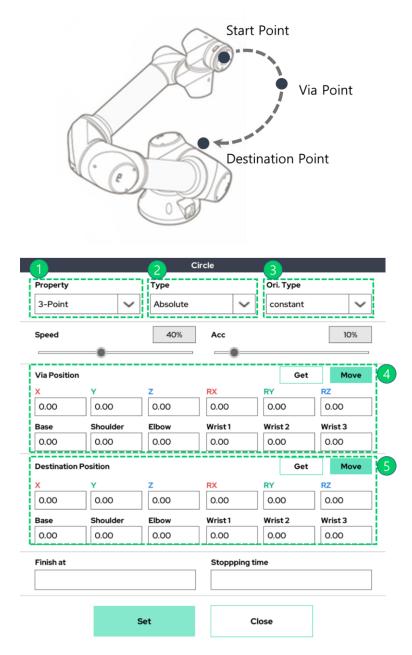

The Circle Function provides a movement method for circular motion.

There are two Circle methods: Three Point and Axis/Center.

- The Three Point method allows a user to draw an arc between three Points. The method requires the user to provide two Points: the middle Point and the end Point. The initial Point will be the most recent position that the robot is in.
- The Axis/Center method allows the user to draw a circle around a center Point. The method requires the user to provide the center Point and the axis around which the robot will draw the circle. The radius of the Axis/Center method is determined by distance between the robot's most recent position and the center Point.

The Circle function offers four Orientation Options: Constant, Intended, Smooth, and Radial.

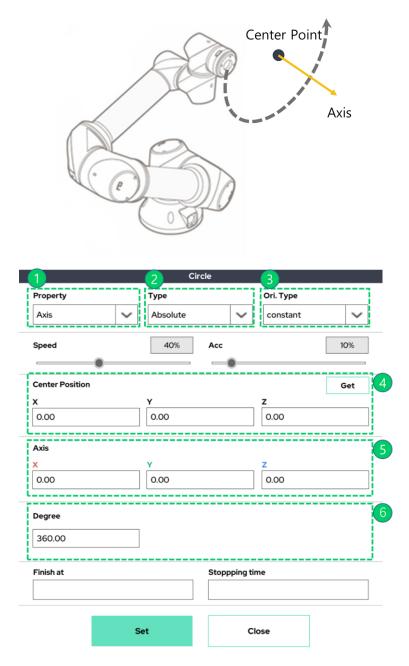
Constant: Maintains the initial TCP orientation (Rx, Ry, and Rz) of the TCP through the movements.


Intended: The TCP rotation set by the user is followed.

Radial: Rotates the TCP orientation with respect to the center point of rotation.

Smooth: The turn changes immediately from the start point to the destination point. The rotation information of the waypoint is ignored.

Three Point Circle Type


The Three Point Circle method draws an arc connecting three points: the starting point, the intermediate waypoint, and the arrival point.

- ① Circular Motion type selection (3-point setting type)
- 2 Point type (Absolute / Variable / Relative / UserCoord.)
- ③ Orientation option (Constant / Radial / Intended / Smooth)
- 4 Via Point information
- (5) Destination Point information

Axis/Center Circle Type

Set the center point for the circular motion, the axis of rotation, and the angle to rotate.

- ① Circular motion selection (axis / center setting type)
- 2 Point type (Absolute / Variable / Relative / UserCoord.)
- ③ Orientation option (Constant / Radial / Intended / Smooth)
- 4 Center point information
- ⁽⁵⁾ Axis information
- ⁽⁶⁾ Rotation angle information

■ Wait Function :

Waits for either a specified condition or a specific amount of time.

There are three modes:

- 1) Wait for a specified amount of time
- 2) Wait while a condition is true.
- 3) Wait until the condition evaluates to true.

1) Time Condition

			Wait		
Mode					
		Wait (Time Condition)		(Holding ndition)	Wait (Exit Condition)
	sec:	1.0			
			Sync:	None	~
		Set		Clos	ie in the second se

Ex) waits for specified amount of time (i.e. 3.0 seconds), then executes the next command

When using 'sync speed control bar' function in Sync, the waiting time is adjusted in inverse proportion to the speed control bar value.

2) Holding Condition

		Wait		
	ait (Time ondition)	Wait (Holding Condition)	Wait (E Conditi	
Condition :	SD_ANALOG_IN_0	== 1]
	Time O	ut: None	~]
	Set		Close	

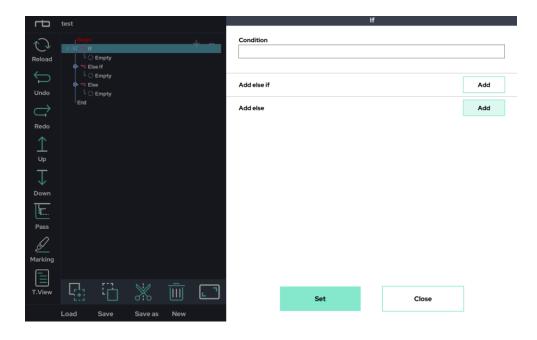
Ex) if the condition is true, the function waits indefinitely

The Time Out function is a function to prevent the condition from continuing to wait until it becomes False in a situation where it cannot be False. Escape the wait after the written time has elapsed.

3) Exit Condition

		Wait			
Mode	Wait (Time Condition)	Wait Cor	(Holding Indition)	Wait (Exit Condition)	
Cor	ndition: SD_ANALOG_IN_	.0 == 1			
	Time	Out:	None	\sim	
	Set		Close		

Ex) If the condition is true, the process exits the wait function and then executes the next task.


The Time Out function is a function to prevent the condition from continuing to wait until it becomes True in a situation where it cannot be True. Escape the wait after the written time has elapsed. ■ If Function :

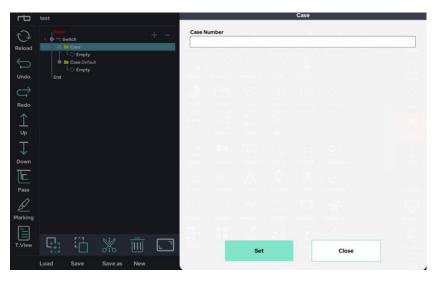
The If Function allows the users to insert a conditional 'if' statement.

Depending on the conditions, branches can be set up so that the robot can perform different commands. Users can set the If / else if / else statement.

After adding the If function to the program tree and clicking the added If function, the following popup window appears. Users can enter the conditional statement they would like to use in the If statement.

Else if (+ Add else if) or Else functionality (+ Add else) can be created along with branch of conditional statements.

■ Switch Function :


Switch statement. Depending on the conditions, branches can be set up so that the robot can perform different commands. Switch / case statements are available.

The following popup window appears by clicking the added switch function in the program tree. Users than can enter the criteria arguments for the Switch statement to work.

Ъ	test							Switch		
C Reload		witch Case	_			Switch				
Undo		Case Default				Add case				Add case
\rightarrow										
Redo										
↓ Down										
Pass										
Marking										
					_					
T.View	E:	F	\gg	Ш			Set		Close	
	Load	Save	Save as	New						

When first creating a Switch statement, 'default' will automatically be created. Additional case statements can then be added using the (+ Add case) button.

After clicking the (+ Add case) button, the following window will appear. Enter the conditional argument in the field, then press the Set button to save.

■ Repeat Function :

Repeats the nested program by the specified condition. There are three modes – these modes look similar to those within the Wait function:

1) repeat a specified number of times.

Note: if a user sets this value to 0, it will repeat indefinitely

- 2) repeat while the specified condition is true
- 3) repeat while the specified condition is not true.

After clicking the Repeat button, a popup menu containing the three modes will appear. Once it opens, select and use the desired function.

1) Time Condition

		Repea	nt		
Mode					
	Repeat (Time Condition)	Repeat (Holding	Condition)	Repeat (Exit Condition)	
	1				
	Set		CI	ose	

Ex) The above example will repeat a subprogram 1 times.

2) Holding Condition

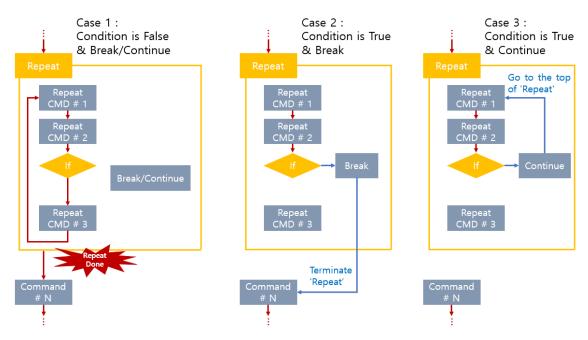
	Repe	eat	
Mode Repeat Condit		Dencet (F	
Condition	SD_ANALOG_IN_0==18	&&SD_DIGITAL_IN_1==1	
	Set	Close	

Ex) While ANALOG_IN_0 and DIGITAL_IN_1 both evaluate to 1, the subprogram will repeat. The subprogram will continue to repeat until at least one of the two values changes.

3) Exit Condition

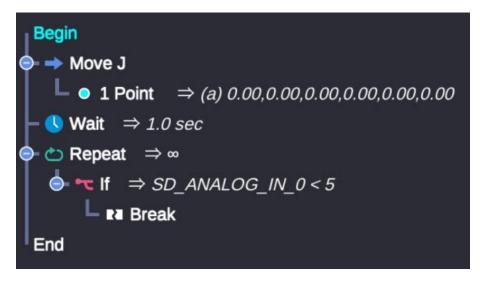
		Repeat		
Mode				
	Repeat (Time Repeat (Condition)	Holding Condition)	Repeat (Exit Condition)	
Co	ndition SD_ANALOG_IN	_0==1&&SD_DIGITAL_	IN_1==1	
	Set	CI	ose	

Ex) The subprogram will repeat until both ANALOG_IN_0 and DIGITAL_IN_1 evaluate to 1. The subprogram will continue to repeat until both values become 1.


■ Break Function :

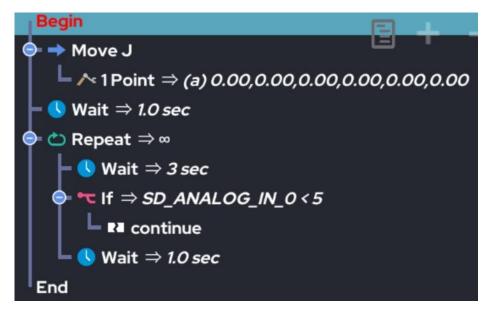
This is a function to forcibly terminate the Repeat (break) or move to the top of the Repeat (continue). Even if the Repeat condition determines that the subprogram should continue, the Break function can be used to escape the Repeat. The Continue function is used into the Repeat function, and when used, it moves to the top of the Repeat without executing the subprogram

It can only be used as a subitem of the Repeat function – it cannot affect any other part of the program.


		Break	
Option Break	~]	
Dreak			
Function to e	escape from 'Repeat'.		
			1
	Set	Close	
		_	-

If a repeat break and continue are used, it will behave as shown in the figure above.

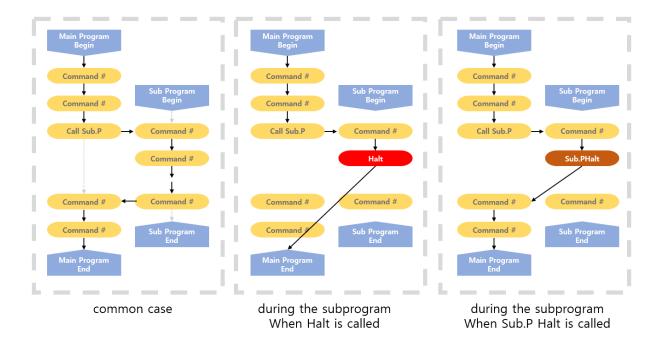
* Example of break function


In the example below, there is an infinite loop that contains an If function. If the condition (SD_ANALOG_IN_0 < 5) ever evaluates to true, the subprogram escapes the loop and executes the next command (in this case, **End**). If the condition never occurs, the loop will repeat indefinitely.

* Example of continue function

The example below has an infinite loop with an if function. If the condition $SD_ANALOG_IN_0 < 5'$ is true, the command at the bottom of the Continue

function is not executed and the command at the top of the loop is executed (in the example, wait 3 seconds).



■ Halt Function :

Terminates the program.

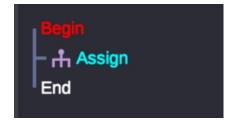
Halt is divided into Halt and Sub.P Halt. Halt is a function that terminates the main program regardless of whether it is executed in the main program or sub-program. Sub.P Halt must be used within the sub program, and the moment it is executed, the sub program ends and returns to the main program. Please refer to the diagram below.

In the example below, the program will check the If function and call the Halt function if the condition is true. If the condition is true, the program will terminate and will not execute the next commands.

Warning:

1) When the Halt function is executed, the main program will terminate – this includes any additional Thread functions.

Assign Function :

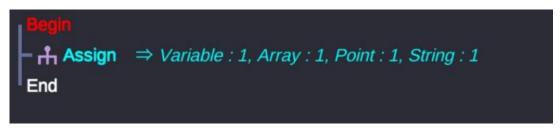


Declare and designate the value of a variable. Variables can be changed through the program to allow for greater flexibility with conditionals.

A variable can be one of the 4 following types:

- Variable Type: Saves a single numerical (float) variable.
- Array Type: Saves multiple values in a list. The maximum length of the array is 10.
- Point Type: Saves position information (saves x, y, z, Rx, Ry, Rz).
- String Type: Saves a string (alphabetic and numerical characters e.g. "ASDF1234")

When the Assign function is added to the program tree, it will look as shown below.



To assign a variable, click on Assign and a popup will appear. Then, the variable can then be assigned within the popup. Multiple variables can be declared by clicking the Add button. To save the variable, click on the Set button.

If a declaration is made, the variable name and initial value will be displayed on the tree as shown below

If multiple declarations are made, the program tree will show how many variables of each type were declared.

An example popup window of the Assign function is shown below. Note, the below window shows 4 declarations.

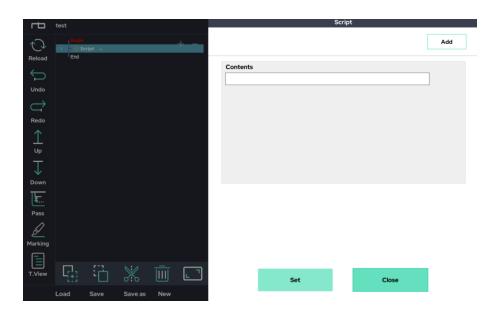
гЪ	test								Ā:	ssign		
C) Reload	Begin 1 - H A End	ssign → Varia	ble :	-	•	1 Declare t	huma	2 Nat		3 Initial value		Add
$\overrightarrow{\mathbf{D}}$						Variable		1	y_var	3.14		
Undo						Array	~	₽	y_arr	{100,200,300}		4
\rightarrow						Point	~	my	y_point	00,0.00,0.00,0.00,0.00]		۲
Redo						String	~	my	y_str	"hello_rb5"		
 ∪p										31		
\downarrow												
Down												
¥												
Pass						Variable	Single ele	ement	variable (ex: v1 = 1)			
101/						Array			nts variable 0} Max: 10 element	s OR a1 = a2 (Another array nan	e))	
Marking						Point	6-eleme	nts var	iable (ex : p1 = {0,0,0,	0,0,0} OR p1 = p2 (Another po	int nam	e))
						String	String ty	pe vari	able (ex:s1="my_str	ing" OR s1 = s2 (Another string	name))	
T.View		ίĊ	\gg		<u> </u>				Set	Close		
	Load	Save	Save as	New								

Each part of the popup encircled in green dotted lines are explained below:

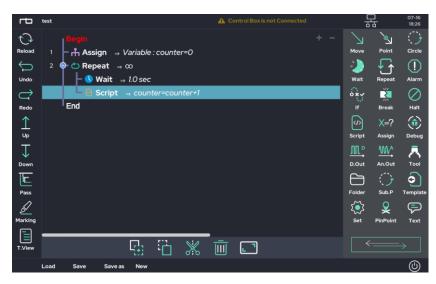
- 1) Declares the type of variable (Variable, Array, Point, String).
- 2) Sets the name of the variable
- 3) Sets the initial value during the declaration.

For the Variable Type, the initial value is set as a single number (e.g. 1).

- For the Array type, place initial values within curly braces (e.g., {100, 200, 300}).
- For the Point type, use curly braces around the initial values, which will be in the form of an array of six lengths, (e.g., {300, 300, 0, 90, 0}).
- For the String type, put use quotations around the string for the initial value (e.g., "hello_rb5").
- 4) Button for the Point type.


The six coordinates (x, y, z, Rx, Ry, Rz) of the current robot configuration are imported as initial values.

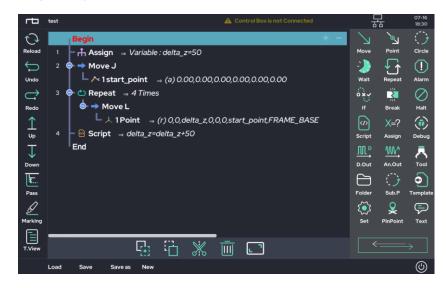
■ Script Function :


Allows the user to write custom scripts. These scripts allow for custom operations / calculations. The Script Function also allows for functions such as variable substitution and assignment.

Add the script function to the program tree and click the added script function. The following popup window will appear.

From here, the user can enter a custom script. If the user wants to execute multiple lines, click the Add button at the bottom of the popup window.

The following example is a program that uses the Repeat function to repeat once every second. After each second, the Script function increases the variable called *counter* by 1. This will repeat indefinitely, as the loop is set to continue an infinite number of times.



In the example below, the variable *delta_z* is set to 50. The MoveJ function is used to move to a specific pose named *start_point* (using the Point naming feature).

Once MoveJ moves to start_point, the Repeat function is set to repeat its subitems four times.

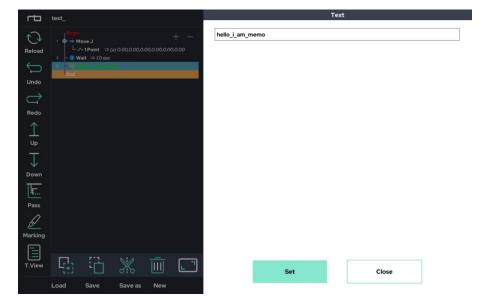
- MoveL uses the Relative Point function to move vertically in the *z* direction by *delta_z* (50 mm) from *start_point*. (See the relative point function of the linear movement series of the point function.)
- At the end of the loop, *delta_z* is increased by 50 using the Script function.

To summarize, the robot moves to the first position with MoveJ, saves the position as start_point, and then repeats 4 times with Repeat Function and moves up by 50mm each loop using the MoveL function.

Warning:

- 1) The script function is an area where the user can freely write and execute a script.
- 2) If the users write a script that doesn't match the syntax, the program may malfunction or stop. Be mindful and use the proper syntax when using this feature.

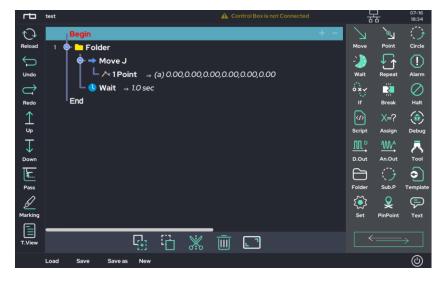
■ Text Function :



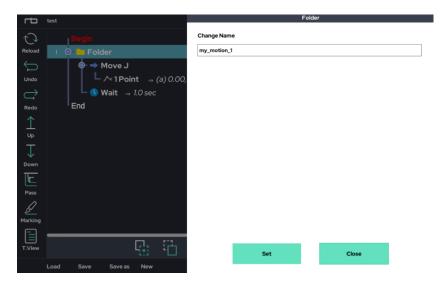
The Text Function allows users to make notes/comments in the program list tree.

The text function is displayed as green text in the program tree and does not affect the functionality of the program. Click the Text icon to add it to the Program Tree.

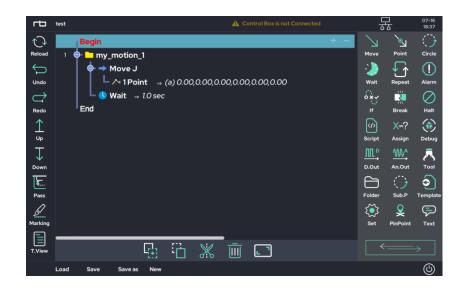
Users can add messages by clicking on the new Text line in the program tree. Notes can be added by adding text to the popup. Press Set to save.



■ Folder Function :

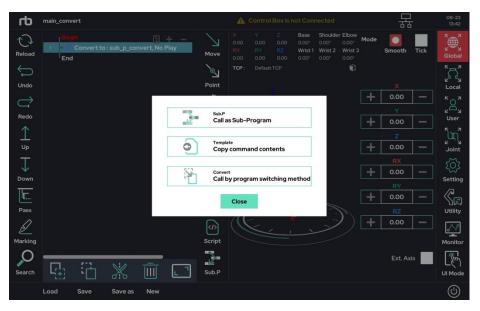


The Folder function helps to organize commands and manage them as modules. Each Folder can contain commands as sub-items, helping with the flow of the program. Each folder can then be renamed to help provide details to the flow of the program.


By clicking the Folder icon, it will be added to the program tree. Commands can then be added, as shown below.

To rename the folder, click on the new Folder in the program tree. A popup will appear for the user to change the name. Press Set to save the new name.

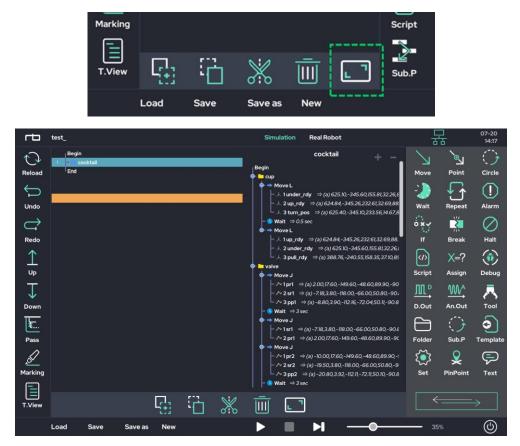
The program tree will now show the folder with its new name.



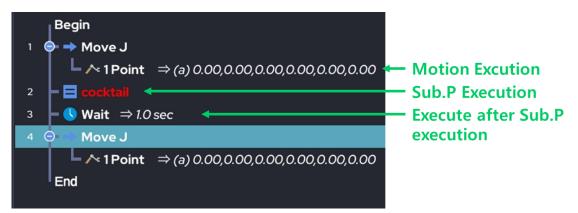
Like the Text function, it does not affect the function of the program. This function only helps to manage the flow of the program by allowing for module creation. ■ Sub.P(Sub Program) Function :

Allows users to insert other program files into the current project. These other program files are made in advance and accessed through the file explorer window.

If you click the Sub.P icon in the program, the following pop-up window appears, and at this time, click 'Sub.P'.


If you click 'Sub.P', a popup window with file explorer function appears as shown below.

Through the file explorer window, a user can view other projects created on the tablet PC. To add another file as a sub program, select the desired project and click the Open button.



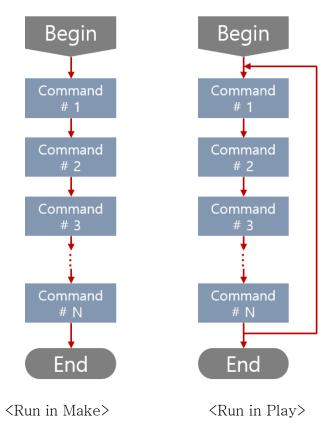
In the above example, a subprogram named **cocktail** has been inserted into this project. To see the contents of the subprogram, expand the program tree viewer (shown below in the green dotted lines) and click on the loaded subprogram. The current project is displayed on the left side, and the loaded project contents are displayed on the right side.

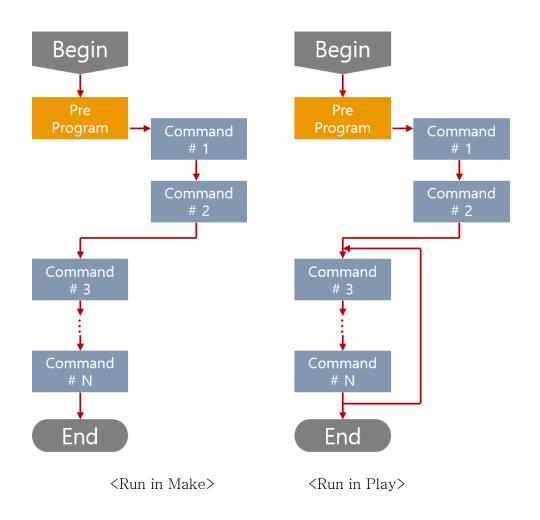
A subprogram is executed sequentially along with other programs.

If other commands are placed after a subprogram, they will be executed after the subprogram finishes.

Warning:

- 1) The contents of a subprogram called by the Sub.P function can be seen by the user, but they cannot be modified. If modifications are required, the project must be opened separately.
- 2) The Sub.P function can be called up to 10 levels deep. It is not recommended to use recursion with the Sub.P function.


■ Pre.P(Pre Program) Function :


The Pre-Program function is a dedicated Folder placed at the beginning of the program. *The Pre-Program folder will execute its contents only once.*

- Pre-Program will **not** have an effect on a program in Make mode, since the program will exit when it finishes executing.
- Pre-Program will have an effect on a program in Play mode, since the program is on repeat.

The figure below shows the general command flow when the Pre.P function is not used.

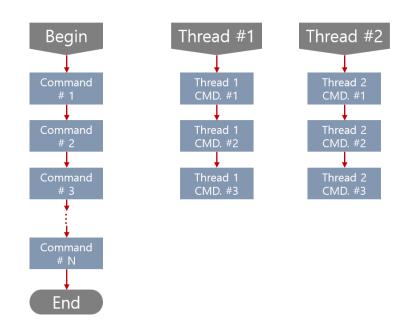
The left column shows the flow of a program being executed in the Make screen, whereas the right column shows the same program being executed in the Play screen. In Make, the program between Begin and End runs once. In Play, the program between Begin and End runs indefinitely. The figure below shows the program instruction execution flow when the Pre.P function is used.

In the Make screen, commands between Begin and End are executed in sequence, regardless of the use of the Pre.P Function.

In the Play screen, the program repeats between Begin and End, but the commands contained within the Pre-Program Folder is executed only once.

Pre.P function is useful for running Functions that need to be performed once, such as variable declarations, and communication connections.

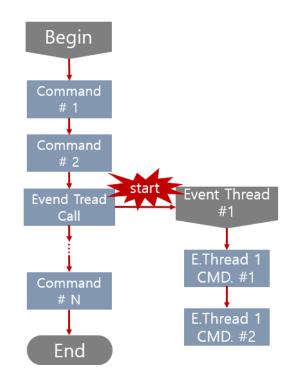
The figure below shows the Pre.P (Pre-Program) Function used in an actual project. The Pre.P function must be directly after the Begin line, as it runs before the rest of the program. Users cannot copy the Pre.P Folder and paste it elsewhere.


Warning:

1) If the Pre.P function is used in a project called through the Sub.P function in the main program, the Pre.P function applies only to the main program.

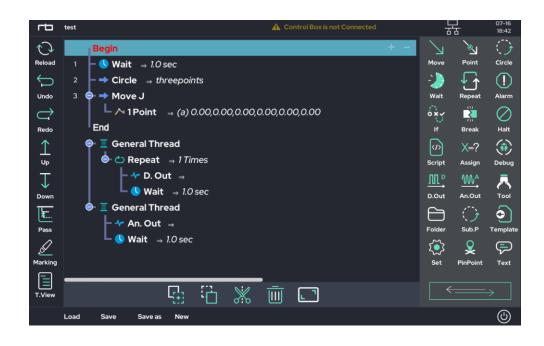
■ Thread Function :

Will create a separate program tree called "Thread." This program will run in parallel (at the same time) with the main program. However, the thread program tree is limited to using functions that do NOT control robot operation. In other words, the user cannot put a Move, Point, or Circle function in the thread program tree.



As shown above, the Thread Function is configured in parallel with the main program

- Threads do not repeat automatically and will end when the main program ends – even if the thread has not completed. To implement a Repeat Function, highlight a command within the Thread program tree and press the Repeat icon.
- To implement a thread that repeats every second, use the Thread icon, use the Repeat Function within that thread, then place a one second Wait Function within the Repeat.
- The Thread Function will support only up to 3 different threads
- Thread functionality works only in the current running program. If a subprogram called through a Sub.P function uses a thread, it will not work properly.

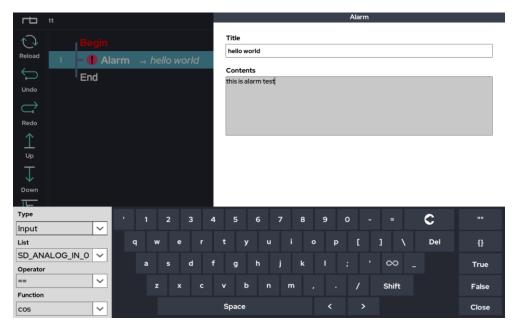

Thread types are as follows:

- General Thread : It stops with the user's intentional pause, alarm, collision detection, etc.
- Non-Stop Thread : It does not stop except for collision detection.
- Non-Stop Thread2 : It doesn't stop until the program Halt.
- Event General Thread : This is a General thread executed by the event thread call function in the main program.
- Event Non-Stop Thread : It is a non-stop thread that is executed by the event thread call function in the main program.

The figure below is an example of how the Thread function can be inserted into an actual project. In the example below, two threads are inserted.

As shown in the figure above, the event thread starts running when the event thread call function is used in the main program.

Warning:


- 1) For the stability of the program, the use of threads is not recommended within any program called by Sub.P.
- 2) Commands such as Move or Circle Functions cannot be placed within a thread.
- 3) When using Pause or Alarm function, both main program and thread are paused.
- 4) When the main program exits, the thread will also exit even if the thread has not yet finished executing.

■ Alarm Function :

Places a popup message within the flow of the program. The message will disrupt the execution of the program, prompting user confirmation to continue or stop the program.

After clicking the Alarm icon, an Alarm will be placed within the program tree. Click the new Alarm to display the setting window as shown below.

Enter the title and content of the alarm window. The title will appear at the top of the popup, and the content will provide more in-depth information about the alarm. The below image is an example of a user-made Alarm.

rta test_			Sim	nulation	Real	Robot						07-20 14:19
Reload End	nd					Base 0.00" Wrist 1 0.00"	Shoulder 0.00" Wrist 2 0.00"	Elbow 0.00° Wrist 3 0.00°	Mode	Smooth	Tick	لا مع لا مع Global
Undo										Base		
\rightarrow		Alarr	n : hello v	vorld					+	0.00°		
Redo										Shoulder		
\uparrow									+	0.00°		
										Elbow		
Up	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								+	0.00°		
\downarrow	this is alarm test									Wrist1		C
Down									+	0.00°		Utility
and the second se										Wrist2		
¥									+	0.00°		
Pass										Wrist 3		Setting
S	Resume				н	alt			+	0.00°	-	
Marking					0.00							<u></u>
		10730										Monitor
	S12											
T.View	▓ 面 □	Sub.P										3D View
Load Save	Save as New				Þ			•		- 35%		٩

To better control the flow of the program, the user can either Resume or Halt the program's execution from the pop-up.

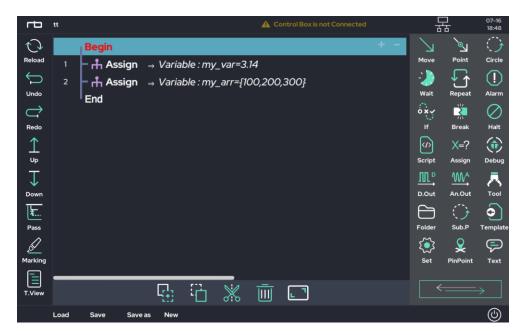
- Resume: Continue to the next command
- Halt: Terminate the program

Pressing the Resume button in the pop-up window will resume the program, whereas pressing the Halt button will stop program at this point.

When using the alarm function, both the main program and thread programs are paused and at the same time.

■ Debug Function :

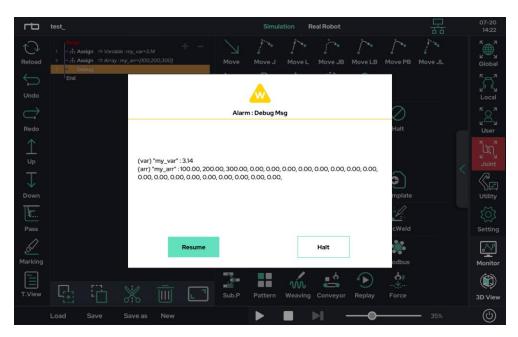
Function for debugging internal values. Users can make a pop-up display the value of a variable or internal parameter, similar to an Alarm.


Debugging is for observing internal variables. It is mainly used to check the value of variables used in the program during program teaching / development.

		Debug		
				Add
Name				
]
	Set		Close	

After adding the debug function to the program tree, click Debug to see the popup window as above. Enter the variable name in the Name field to view how variables change. To observe several variables within the same popup, press the (Add) button to add another variable.

The follow is an example on using Debug.


Declare one variable type variable (my_var = 3.14) and one array type variable (my_arr = {100,200,300}) using the Assign function as shown below.

Add a Debug Function below it. Set the variables in the Debug window to observe the two previously declared variables as shown below.

гЪ	tt					Deb	bug	
Ċ								Add
Reload		– 🕂 Assigr	n ⇒Va	nriable : my_	Name			
$\stackrel{\frown}{\frown}$		– 🕂 Assigr	$h \rightarrow V \hat{c}$	nriable : my_	my_var]
Undo	3	– 🐞 Debug] ⇒		my_arr			
\ominus		End						DEL
Redo								
⊥ Up								
\mathbf{T}								
Down								
¥								
Pass								
<u>.017</u>								
Marking								
	_			r-1				
T.View) ⁶		Set	Close	
	Load	Save Sa	ve as N	ew				

Once the setting is complete, run the program (the tablet PC and the control box must be connected before execution), and the following pop-up window will appear when the Debug command is executed. The pop-up will allow the user to observe the specified variable values.

- Resume: Continues to the next command.
- Halt: Terminates the program.

■ Set Function :

The Set function allows users to temporarily change parameter settings, regardless of the default values contained within the Setup menu. While the settings in the Setup menu are applied as defaults to all projects, the Set function allows users to temporarily override these parameters.

The various parameters that you change on the Setup screen are applied as default values for all projects that use that control box. If you need to use certain parameters separately for a particular project, you can manage parameter settings by project by adding the Set function to the top of the project (for example, Pre.P. sub).

The Set function is a temporary setting, not a permanent setting. When a new Set function is called for the same parameter setting, the parameter is reflected based on the new Set function.

When the program ends, the parameter settings will return to the default values as defined within the Setup menu.

The parameters that can be changed via the Set function are as follows:

- Time
- Collision Threshold
- Tool Payload
- Linear Move Offset
- Inbox check mode
- TCP Position
- Tool Collision Box
- Global Workspace
- Inbox size
- Collision Check On/off

- Overall speed multiplier
- Overall acceleration multiplier
- Serial communication configuration
- Fixed Velocity / Acceleration
- Spiral circle mode
- UI speed control bar
- Stop mode after collision detection
- User coordinate center shift
- Program flow after collision detection
- Disable Box D.out
- XYZ Projection
- Orientation Align
- User Coordinate Config
- XYZ Shift
- XYZ Shift2
- Vibration sensor
- Digital Input Simulation
- Program Flow Control
- High acceleration Mode
- Motion Time Constraints
- High Sensitivity Coll.Detect
- Micro offset value
- User Coordinate Shift 6D
- User Coordinate Auto Alignment
- Timer Setting
- No-Arc Move speed

Warning:

- 1) The value set in the Set function is a temporary value. When the program exits, it automatically returns to the default values set from the Setup Menu.
- The functions provided by the Set function allow you to change the setting value to another value in the middle of the program flow.
 For example, you can use Set's 'Collision On / Off' feature to selectively turn on/off collision detection in the middle of a program flow.

Set Function: Time

	Set
Туре	
Time	~
Time	
0.00	
Temporarily 'S saved value.	et' the following parameters. When the Program ends, it returns to the default
	Set Close

Starts the timer and sets the initial value. Starting with the value entered, the value of the timer increases.

Set Function: Collision Threshold Change

Set		
_		
Type Collision Threshold		
Threshold 100%		
•		
Temporarily 'Set' the following parameters. When t saved value.	he Program ends, it returns to	the default
Set	Close	

Temporarily sets the collision detection sensitivity. The lower the value, the more sensitive the robot is to collision. This has the same functionality as the Collision Threshold option within the Setup Menu.

Set Function: Tool Payload

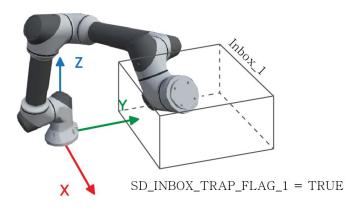
Payload		~			
Mass					
0.00					
Center of gra	vity				
X (mm)		Y (mm)		Z (mm)	
0.00		0.00		0.00	
	et the following	parameters. When	the Program e	nde it returne to	the default
Toome or or it - 'C		parameters. when	the Program e	nas, it returns to	the default

Temporarily set the tool's weight and center of gravity. This has the same functionality as the Payload option within the Setup Menu.

Set Function: Linear Move Offset

Type Linear Move Offse	t 🗸	
Linear Move Office	The second secon	
(Y	z
0.00	0.00	0.00
x	RY	RZ
0.00	0.00	0.00
femporarily 'Set' th aved value.	e following parameters. When th	e Program ends, it returns to the default

Gives a slight offset relative to the base coordinate system. This function allows users to temporarily set an offset of up to 20 mm.


Set Function: Inbox Check mode

Type Inbox		\sim		
INDOX		\checkmark		
Box			Mode	
0		\sim	No Checking	~
Temporarily 'S saved value.	et' the following parame	eters. When t	the Program ends, it returns	to the default
		_		_

Allows the user to enable the Inbox Checking feature. The Inbox Checking feature checks whether a certain part of the robot is in a predefined area (either in the Setup screen or the using the Set function). The parts of the robot that can be checked are as follows.

- Is the center of the tool flange inside the specified area?
- Is the TCP inside the specified area?
- Is any part of the gripper (tool box) in the specified area?
- All the above

The size and position of the box can be set in the Inbox screen using Setup mode (or through the Set function). After enabling the Inbox Checking feature, the user can use the value via Script, If, or some similar function. Under the "Type" box, choose "Shared Data." Then under the "List" box, use either the SD_INBOX_TRAP_FLAG_0 (not in the box) or SD_INBOX_TRAP_FLAG_1 (in the box) variables.

Set Function: TCP Position

TCP Position			
x	Y	z	
0.00	0.00	0.00	
RX	RY	RZ	
0.00	0.00	0.00	

Temporarily set a relative offset of the tool's TCP position. Note: This will change the X, Y, and Z used for Global TCP calculations. It has the same functionality as the End Effector menu in Setup-Tool.

Size				
X-width (mm)	Y-width (mm)	Z-width (mm)		
0.00	0.00	0.00		
Position				
X (mm)	Y (mm)	Z (mm)		
0.00	0.00	0.00		
	ollowing property. When the D	ogram ends, it returns to the default		

Set Function: Tool Collision Box

Temporarily set the size and position of a virtual box surrounding the gripper for self-collision prevention. The size and position of the virtual box will be relative to the TCP Position. It has the same functionality as Tool Setting for Collision Check in Setup-Tool.

Set Function: Global Workspace

Enable WorkSpace			
Max			
X (mm)	Y (mm)	Z (mm)	
0.00	0.00	0.00	
Min			
X (mm)	Y (mm)	Z (mm)	
0.00	0.00	0.00	
Temporarily 'Set' the follow saved value.	ving parameters. When the	Program ends, it returns to	the default

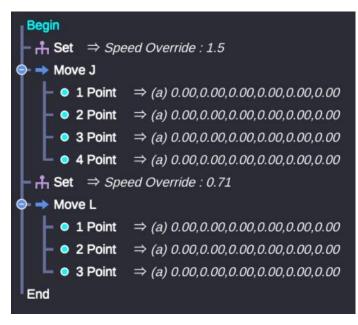
Temporarily set the limits of the workspace for collision prevention. It has the same functionality as the Workspace Limits menu in Setup-Cobot.

Box O	~	
Size	ii	
X-width (mm)	Y-width (mm)	Z-width (mm)
0.00	0.00	0.00
Position		
X (mm)	Y (mm)	Z (mm)
0.00	0.00	0.00
Temporarily 'Set' the fo	blowing parameters. When the Pro	ogram ends, it returns to the default

Set Function: Inbox Size

Temporarily set the position and size of the Inbox. It has the same functionality as the Inbox settings in Setup-Inbox.

Set Function: Collision Detection On/Off


Enable					
Activate or De-	activate the Collision Detect	tion functio	n.		
Temporarily 'So saved value.	et' the following parameters.	When the	Program ends, it ret	urns to the defau	ult

Temporarily sets the use of external collision detection mode. It has the same functionality as the Enable Collision box in Setup-Cobot.

Set Function: Speed Override (speed multiplier)

		Set		
Туре				
Speed Overric	de 🗸			
Speed				
1.0				
Multiplier can t	se set between 0.0 and 2.0, o	r pre-d	efined variable.	
Temporarily 'S saved value.	et' the following parameters.	When t	he Program ends, it returns to	the default
	Set		Close	

Allows the user to temporarily to change the base scaled speed used by the Move and Point functions. Users can either enter a value between 0 and 2.0, or a predefined variable.

In the example above, the base speed for Move J is overwritten to be 1.5 times the normal speed, whereas the base speed for Move L is overwritten to be 0.71 times the normal speed.

Set Function: Acceleration Override (acceleration multiplier)

Type Acceleration	Override	\sim			
Acc					
1.0					
	scale (multiplier) for acco be set between 0.0 and 3				
Temporarily 'S saved value.	Set' the following parame	ters. When	the Program ends	s, it returns to	the default

Allows the user to temporarily to change the base scaled acceleration used by the Move and Point functions. Users can either enter a value between 0 and 2.0, or a predefined variable.

Through the code below, you can see how the speed and acceleration change when Speed Override and Acceleration Override are used.

Begin	
1 🗢 → Move J	
□ \land 1Point \Rightarrow Speed = 45% / Acc = 30% =	Robot will move Speed/Acc = 45%/30%
2 - \mathbf{H} Set \Rightarrow Speed Override : 2.0	
3 🗢 → Move J	
□ \land 1Point \Rightarrow Speed = 45% / Acc = 30% =	Robot will move Speed/Acc = 90%/30%
4 - 🕂 Set → <i>Speed Override : 1.0</i>	
5 - \mathbf{H} Set \Rightarrow Acceleration Override : 0.5	
6 🗢 → Move J	
□ \land 1Point \Rightarrow Speed = 45% / Acc = 30% -	Robot will move Speed/Acc = 45%/15%
7 - \mathbf{H} Set \rightarrow Acceleration Override : 1.0	
8 🗢 🍑 Move J	
□ \land 1Point \Rightarrow Speed = 45% / Acc = 30% -	Robot will move Speed/Acc = 45%/30%
End	

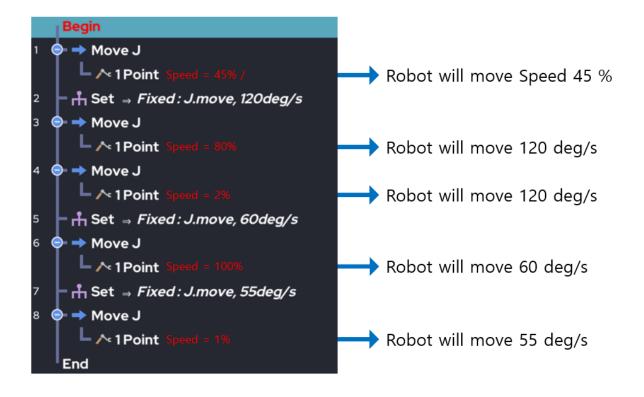
Set Function: Serial Communication Configuration

		Set		
Type Serial Configu	ration V]		
Device			Baud Rate	
Tool	~		1200	\sim
Stop bit		_	Parity	
1	~]	None	~
Temporarily 'S saved value.	et' the following parameters Set	. When t	he Program ends, it returns to Close	the default

The baud rate and stop bit / parity of the serial communication are temporarily set. It has the same meaning as set in Setup-Serial.

Set Function: Fixed Velocity/Acceleration

	Se	t	
Туре			
Fixed Vel/Acc	~		
Туре			
Joint Movement	\sim		
Vel. (deg/s)			
Acc. (deg/ss)			
Ignores the Speed/Accel	eration values set in 'Po	int' and uses fixed values.	
Temporarily 'Set' the follo saved value.	wing parameters. Whe	n the Program ends, it returns t	o the default
			1
	Set	Close	


This function is used when you want to use a fixed value, ignoring the set speed / acceleration for each Move point. There are two sub options: Joint Movement and Linear Movement.

The velocity (deg / s) and acceleration (deg / s ^ 2) set in the Joint Movement affect the movement speed and acceleration of the Joint movement types MoveJ and MoveJB.

The velocity (mm / s) and acceleration (mm / s 2) set in Linear Movement affect the movement speed and acceleration of the linear movement types MoveL, MoveLB, MovePB, MoveJL, MoveITPL and Circle.

If you do not want to force speed / acceleration through this function, clear the check box. In this case, it follows the speed / acceleration value set for each point during operation.

Ex) If you need to keep a certain speed and acceleration during operation, you can use this Set function as in the code below.

Set Function: Spiral Circle Mode

		Set		
Type Spiral Circle M	lode 🗸 🗸]		
Type Distance	~			
Radius			Speed Mode Fixed Linear VEL	~
Temporarily 'S saved value.	et' the following parameters.	When t	he Program ends, it returns to	the default
	Set		Close	

This function is used to change the circular motion into spiral motion. Draw a circle / arc when using the Circle function. If Set-Spiral mode is used over the Circle function, the existing circle / arc will be changed to spiral motion. Therefore, to implement spiral motion, this function should be inserted above the Circle function.

Ex 1) Only Circle is used: Create a general circle / arc trajectory

Ex 2) Set-SpiralMode + Circle: Spiral trajectory

Set Function: Speed Bar Control

to some the time of a fact lit.
turns to the default
1

The speed control bar (bottom right) of the UI can be adjusted with the program. You can change the UI speed control bar by using this function in the desired section.

Set Function: Collision Stop Mode

		Set		
Туре				
Collision Stop	Mode	\sim		
Mode				
General Stop)	~		
force. Temporarily 'S saved value.	et' the following paramet	ers. When t	he Program ends, it returns to	o the default
	Set		Close	

Select the robot's motion type when after detecting an external collision. There are two options.

General Stop: After the collision is detected, the trajectory movement is paused on the spot.

Evasion Stop: After the collision is detected, the robot moves a small amount away from the external force, then pauses the trajectory movement.

It has the same meaning as Setup-Cobot's "Action after Collision".

Set Function: User Coordinate Shift

	te Shift	~			
User Coordina				ence Coordinate	
USER_COOR	D_0	\sim	FRAME_B	ASE	~
Shift Distance	(mm)				
x	Y	,		z	
		rameters. Whe	n the Program e	nds, it returns to	the default

This function is to move the origin of user coordinate system temporarily. You can set the user coordinate system number and shift distance you want to shift and choose which coordinate system to shift the shift distance.

Set Function: After Collision Detection

		Set			
Туре					
After Collision	Detect V	r			
Mode					
Program Pau	use State 🗸 🗸	*			
Temporarily 'S saved value.	et' the following parameter	s. When t	he Program end:	s, it returns to	the default

The program flow can be selected after external collision detection.

Our default setting is to pause the program after detecting an external collision. After detecting a collision, a collision detection alert pops up and the program and threads are paused.

If you want to terminate the program after collision detection, you can use this function to select the option as Stop state.

Pause State: Program flow is paused after external collision detection.

Stop State: Program flow stops after external collision detection.

Set Function: Disable Box D.out

		Set		
Туре				
Disable Box D.	out 🗸			
Box output				
Normal Out	~			
Disable Out : D	.out function in Program sec	tion will	be ignored.	
Temporarily 'Se saved value.	et' the following parameters	. When t	he Program ends, it returns t	o the default
	Set		Close]

This function temporarily disables the digital output of the control box.

Even if the digital output command inserted in the program is not erased, this set command can be used to ignore the digital output command in a specific section.

It can be used for development testing, etc., and by selecting an option, the output can be deactivated/activated according to the program section.

Set Function: XYZ Projection

		Set		
Туре				
XYZ Projection	~]		
	· · · · · ·	-		
Frame Selection				
None	~			
None	·]		
Frame Global				
Frame Local				
Frame User0				
Frame User1				
Frame User2				
Temporarily 'Set' the saved value.	e following parameters.	When t	he Program ends, it returns to	o the default
Savea vaide.				
]
	Set		Close	

This is a function to fix the target position coordinate value of L series movement (eg MoveL. MovePB, Circle etc). If you select the value to be fixed and the reference coordinate system, the position coordinate value of the target point or set point is fixed to the value of the selected axis of the selected coordinate system.

For example, if the base coordinate system (Global) is selected as the coordinate system and Z Projection 100mm is selected/written, the Z height of all moving target values/set coordinate values is applied collectively as 100mm.

This function is also a set function, which can be activated/deactivated for each section of the program. If you want to disable it, select None in the coordinate system.

Set Function: Orientation Align

		Set		
Type				
Orientation Al	ign 🗸 🗸			
Activate align	ment			
Point selection	n			
PT_LAST_TC	P V			
Target rotation	n value of the L-series Move is	s unified	d with the rotation value of th	e selected point.
Temporarily 'Se saved value.	et' the following parameters.	When t	ne Program ends, it returns to	the default
	Set		Close	

This function is to fix the target rotation coordinate value of L series movement (eg MoveL. MovePB, Circle etc).

Fix the rotation of L series motions with the rotation value of the selected Point.

As a sub-function of the Set function, this function can be turned on or off depending on the program section. This function can be used when you want to uniformly rotate the TCP rotation at a time.

Set Function: User Coordinate Config

Jser Coord. to tempor	arily change	Temporary change activat	ion
Coordinate 0	~		
Setting Option		Option 0	~
Config Point 1		PT_LAST_TCP	~
Config Point 2		PT_LAST_TCP	~
Config Point 3		PT_LAST_TCP	~
		hen the Program ends, it returns	

This function allows you to temporarily change the user coordinate system settings.

By selecting three points in the middle of the program flow, the user coordinate system setting can be arbitrarily changed in the middle of the program.

Because it is a sub-function of Set, the user coordinate system setting returns to the default value when the program ends.

Set Function: XYZ Shift

Frame Global Shift value X 0 (mr	~	
X 0 (mr		
Y 0 (mr		
Z 0 (mr		
Target Move type		
L type move	~	

This function allows you to temporarily shift the target point.

User can select a base/tool/user coordinate Config and enter shift values from the target point.

At this time, select whether to apply this shift only to L type or to both L type and J type.

Set Function: XYZ Shift2

Type XYZ Shift2		\sim			
X12 511112		÷			
Frame Selectio	n				
None		\sim			
Temporarily 'Se	t' the following para	meters. When	he Program en	ds, it returns to	the default
saved value.					
_					

This function allows you to temporarily shift the target point.

User can select a base/tool/user coordinate Config and enter shift values from the target point.

At this point, this shift is only applicable to L series operation, and both the XYZ position value and the rotation value can be entered.

At this time, select whether to apply this shift only to L type or to both L type and J type.

Set Function: Vibration sensor

Vibration sensor		\sim			
Collision detection	nmode				
Off		\sim			
Temporarily 'Set' th saved value.	e following para	meters. When	the Program ei	nds, it returns to	the default
_					1

This function allows you to temporarily exclude collision detection by vibration during collision detection.

Set Function: Digital Input Simulation

Control Box	Digital In	put Simu	lation	Mode		Simu	lation	On	~
	o	_	4	_	8	_	12	_	
	1	_	5	_	9	_	13	-	
	2	_	6	_	10	_	14	-	
	3	-	7	-	11	-	15	-	
		— B	ypass	-	Low	-	Hig	h	
Temporarily aved value.		ollowing p	arame	eters. Wh	en the	Program	ends,	it returns to	the default

This function allows you to simulate Digital input signal.

Create the desired input by setting the state of the port to which you want to input.

Set Function: Program Flow Control

Type Program Flow	Control	\sim				
Mode						
None		~				
None						
Pause						
Resume						
	et' the following	parameters. V	lhen the Pro	gram ends, it re	turns to th	ne default
Temporarily 'S saved value.	et' the following	parameters. V	/hen the Pro	gram ends, it re	turns to th	ne default

Set Function: High acceleration Mode

Set	
Type High acceleration Mode	
Mode Off 🛛	
Temporarily 'Set' the following parameters. When the Program ends, it returns to the defaul saved value.	t
Set Close	

High acceleration mode reduces the time the robot's operating speed reaches the desired operating speed through changes in the reduction/acceleration profile.

Set Function: Motion Time Constraints

Type Motion Time Constra	ints 🗸		
Mode			
Off	~		
Temporarily 'Set' the saved value.	following parameters. Whe	n the Program ends, it returns	to the defaul
			-

Motion Time Constraint is a function that constrains the time taken to move a point to point by the time entered. At this time, it is possible to increase time but not to reduce it.

Set Function: High Sensitivity Coll. Detect

Туре		Set			
High Sensitivity	Coll. Detect	\sim			
Mode					
Off		\sim			
Temporarily 'Se saved value.	t' the following paramet	ers. When t	he Program end	ds, it returns to	the default
	Set		Clo	ose	
			L		

High sensitivity Coll.Detect allows the detection of collision to be 30% more sensitive than the existing sensitivity. In Setup, the sensitivity that made collision detection the most sensitive is also 30% more sensitive than 0%.

Set Function: Micro offset value

Se	t
Type Micro offset value	
Frame Selection None	
Temporarily 'Set' the following parameters. Whe saved value.	n the Program ends, it returns to the default
Set	Close

User can give a slight offset based on the desired coordinate system. This function enables temporary offset settings of up to 20 mm.

Set Function: User Coordinate Shift 6D

User Coordinate		Shift Reference Coordinate	
COORD_USER_0	~	FRAME_BASE	~
Shift Value (mm & deg)			
ΔX	ΔΥ	ΔΖ	
∆Rx	∆Ry	ΔRz	
Option		w.r.t. Default setting	~
Temporarily 'Set' the follo	wing parameters Wh	en the Program ends, it returns to t	he default

The user can temporarily shift the user coordinate. This function allows the user to temporarily change the position, rotation of the user's coordinate.

Set Function: User Coordinate Auto Alignment

Frame Selection		\sim	Setting target Default Value	_
User Coordina	te O	~	DefaultMalue	
			Default value	~
Temporarily 'Set saved value.	the following param	neters. Wher	n the Program ends, it returns to the def	ault

This function allows the user to change the user coordinate to the last TCP frame. It is also possible to return to the default user coordinate.

Set Function: Timer Setting

		~			
Timer No.				0	~
Time				0	
Temporarily 'Set' tl saved value.	ne following para	meters. When	the Program	ends, it returns to	the default

User can select the timer their want to use and set the initial value of the timer. The timer starts from the initial value set by the user.

Set Function: No-Arc Move speed

Set	
Туре	
No-Arc Move speed	
Vel (mm/s)	0
Acc (mm/ss)	θ
Temporarily 'Set' the following parameters. When t saved value.	he Program ends, it returns to the default
Set	Close

Set the move speed of the robot in the no-arc state where welding is not performed.

■ D.Out (Digital out) Function :

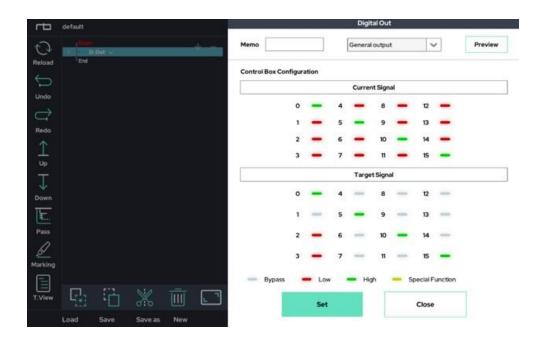
Allows the user to set the digital output of the control box. The user can set the digital output signal of whichever port (0 ~ 15) they would like. Each port has three possible settings: high signal, low signal, and bypass.

After adding the D.Out function to the program, click on D.Out in the program tree to have the following pop-up window appear.

гъ	default									Digit	tal Out			4	
0		Out ⇒		_		Memo			1	General	output		~	2	Preview
Reload	End				2	Control Bo	x Configura	tion			-				
Ç						1				Curren	nt Signi	əl			
Undo						1	0	-	4	-	8	-	12	-	. i
\Rightarrow						1	1	-	5	-	9	-	13	-	
Redo						1	2	-	6	-	10	-	14	-	1
<u> </u>						!	3	-	7	-	11	-	15	-	
					3		_			Targe	t Signa	1	-	-	1
						i	0	_	4	_	8	_	12	_	
Down						1									- i
¥						i i	1	-	5	-	9	-	13	-	
Pass						1	2	-	6	-	10	-	14	-	- i
<u>.</u>						i	3	-	7	-	11	_	15	-	
Marking															
			N12				bass	Low		Hiç	jh	- S	pecial F	unction	
T.View	5	ιĊ	*	Ī		5		Set		ł			Close		
	Load	Save	Save as	New											

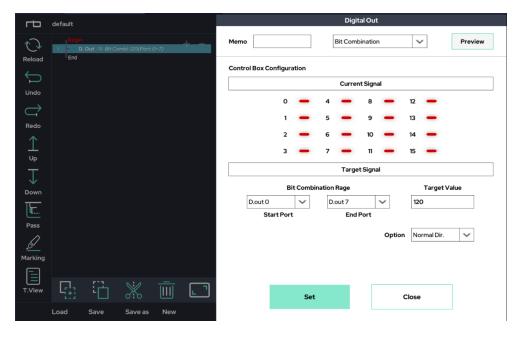

- ① Selection the detailed features available in the D.out function.
- ② Shows the status of the current Digital Out output from the control box.
- ③ Allows the user to set their desired setting for a port (0 ~ 15). The three setting toggles are Bypass, Low and High.

Bypass: Maintains the previous output signal state (gray).

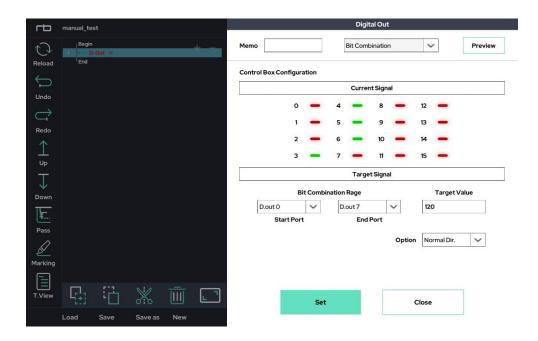

Low: Sets the output signal to the low (0) level (red).

High: Sets the output signal to the high (1) level (green).

- ④ Allows the user to review the settings selected within the target signal menu. A further explanation is shown below.
- 5 Saves the settings specified within target signal menu.

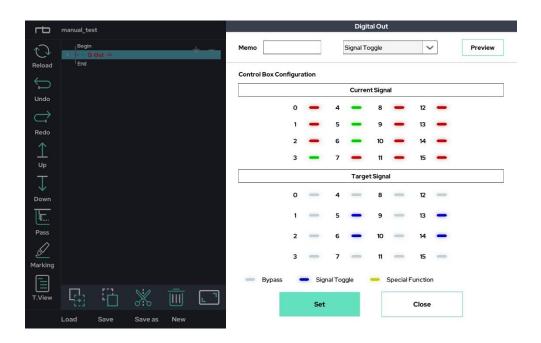


With the control box connected to the teaching pendant, set the Target Signal menu as shown above (to the right). Then, press the Preview button.

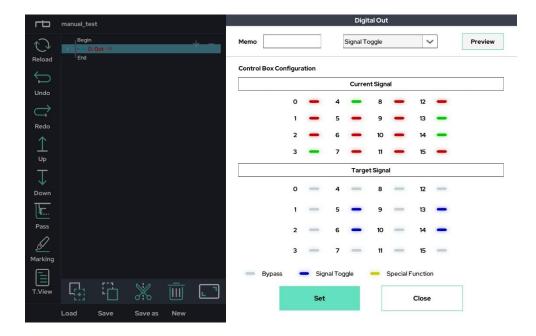


Digital Out: Bit Combination

User can export the Digital output as a bit combination by selecting the start port and end port to use and entering the desired value in Target Value.

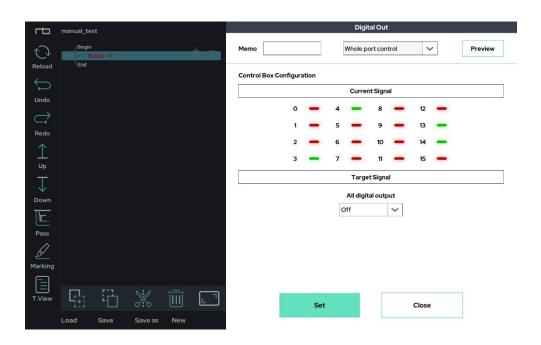


With the control box connected to the teaching pendant, set the Target Signal menu as shown above (to the right). Then, press the Preview button.

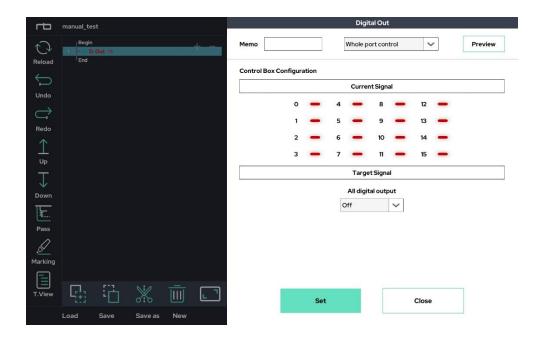


Digital Out: Signal Toggle

To output by toggling a signal.

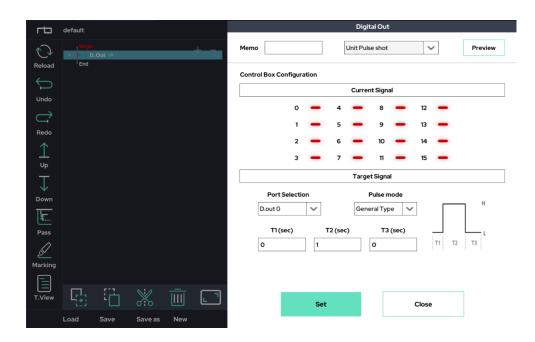


With the control box connected to the teaching pendant, set the Target Signal(the toggle signal represent blue) menu as shown above (to the right). Then, press the Preview button.

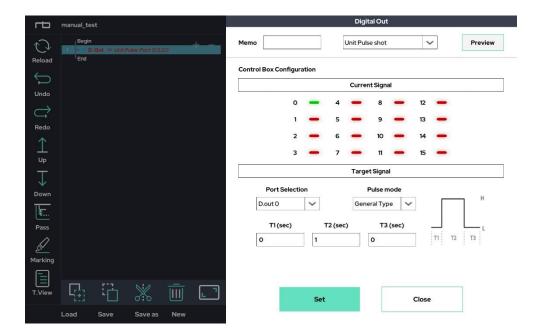


Digital Out: Whole port control

Control in all port signal at one time



With the control box connected to the teaching pendant, set the Target Signal menu as shown above (to the right). Then, press the Preview button.



Digital Out: Unit Pulse shot

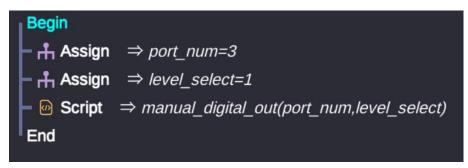
Select the port you want to use and enter the time between 0 and 2 seconds for T1 and T3 to output a unit pulse signal for the time you entered.

With the control box connected to the teaching pendant, set the Target Signal menu as shown above (to the right). Then, press the Preview button.

Digital Out: Pulse Width Modulation(PWM)

The user can use the PWM (Pulse Width Modulation) Function to set the frequency and duty ratio of a PWM pulse, then send that signal through digital output port.

Example 1)


				Digit	al Out					
Memo			Puls	e Width	Modula	tion (PV	/M)	\sim	Preview	
Contro	l box Configu	ration								
				Currer	nt Signa	al				
	0	-	4	-	8	-	12	-		
	1	-	5	-	9	-	13	-		
	2	-	6	-	10	-	14	-		
	3	-	7	-	11	-	15	-		
				Targe	t Signa	1				
1	Port No.				On	/ Off				
	D.out 0			\sim	On				\sim	
	Frequency (Hz	z)			Dut	y (%)				
	100				30					
	100	Set			30]	

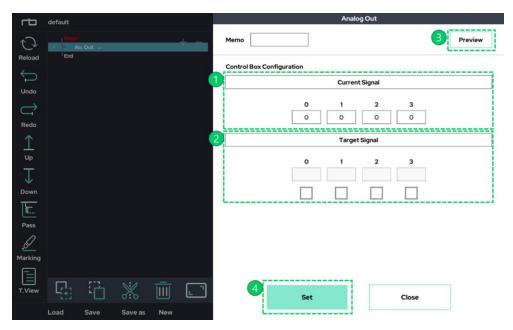
Example 2)

					tal Out				
Memo			Puls	e Width	Modula	ation (PV	VM)	~	Preview
Control box Con	figurati	ion							
				Curre	nt Sign	al			
	0	-	4	-	8	-	12	-	
	1	-	5	-	9	-	13	-	
	2	-	6	-	10	-	14	-	
	3	-	7	-	11	-	15	-	
				Targe	t Signa	1			
Port No.						/ Off			
D.out O				\sim	Or	i.			~
Frequency	y (Hz)					ty (%)			
20					70				
				_	_				7
		Set					Close		
									_
					ים	. + ., .	700	/	
←					υ	ity :	107	0	
I								J	
4	50 n	0000	- 12	0 H:	-)			•	

In addition to using the D.out function, users can create a command to export digital output using the Script function as shown below.

% Function: manual_digital_out (port number, output level)

Warning:


- 1) If a special function is assigned to a specific digital output port in Setup-I/O, that port is not available through the D.out function.
- 2) If a special function is assigned to a specific digital output port, it will be indicated in color yellow.
- 3) If you want to leave a comment about the D.out function you set, you can use the memo function at the top right of the popup window.
- 4) Before using the digital output, please fully understand the electrical properties of the digital output port provided by the manufacturer.

■ An.out(Analog out) Function :

The Analog Out Function controls the analog output of the control box. Outputs the selected voltage through the target (0 ~ 3) analog ports. Each port can output a voltage range of 0 ~ 10V.

After adding An.Out to the program, click on An.out in the program tree to open the following popup window.

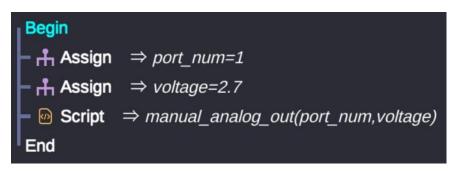
① Shows the status of the current Analog Out output from the control box.

2 Allows the user to enter their desired voltage setting. If the check box is empty, it is set to maintain the existing voltage output. To set the output, check the box, then enter the desired voltage (0 ~ 10V).

③ Allows the user to preview the settings selected within the target signal menu. A further explanation is shown below.

④ Saves the settings specified within target signal menu.

гъ	default					Analog Out
Reload	Begin 1 Au	n.Out →			+ -	Memo
Reload						Control Box Configuration
						Current Signal
Undo						0 1 2 3 0 0 0 0 0
Redo						Target Signal
U₽ ↓						0 1 2 3 2 4 6 8
Down						
Pass						
Marking						
T.View	E:	8	\gg	Ī		Set Close
	Load	Save	Save as	New		


With the control box connected to the teaching pendant, set the Target Signal menu as shown above (to the right). Then, press the Preview button.

гЪ	default					Analog Out	
Reload	Begin 1 – An End	.Out ⇒		_	*	Memo	Preview
\leftarrow						Control Box Configuration	
` Undo						Current Signal	
Redo						0 1 2 3 2 4 6 8	
\uparrow						Target Signal	
Up J						0 1 2 3 2 4 6 8	
Down							
Pass							
Marking							
T.View	[].	(H	\gg	Ī	_ 7		_
1.0100	Load	Save	Save as	New		Set Close	

As shown above, the Current Signal menu will change to match the settings that the user has put in the Target Signal menu.

In addition to using the An.out function, users can create a command to export analog output using the Script function as shown below.

*** Script Function**: manual_analog_out (port number, output voltage)

Warning:

- 1) If you want to leave a comment about the A.out function you set, you can use the memo function at the top right of the popup window.
- 2) Before using the analog output, please fully understand the electrical properties of the analog output port provided by the manufacturer.

■ Tool Out Function :

The tool flange has two digital outputs. Signals from two digital outputs can be specified. In addition, the level of voltage to be output from the tool flange (0V or 12V or 24V) can be adjusted together.

Click the Tool Icon to add it to the program. Click on Tool in the program tree to have the following pop-up window appear.

Current	Voltage		Target	Voltage	
C)		_	_	
		Bypass	0	12	24
)igital Output					
Current	Signal		Targe	t Signal	
-	-		-	-	
0	1		ο	1	

① Shows the current status of the tool flange output at the end of the robot.

O Sets desired voltage and digital output.

- The output voltage can be selected between 0V, 12V, and 24V. There is also an option to Bypass.
- The digital output can be toggled between Bypass, Low, and High.

- ③ Allows the user to preview the settings selected within the target signal menu. A further explanation is shown below.
- ④ Saves the settings specified within target signal menu.

-	Target	Voltage	Preview
-	Target	Voltage	
	Target	Voltage	
	_	_	_
Bypass	ο	12	24
	-	-	
	Targe	t Signal	
	0	1	
- High			
		Close	
		Targe O	Target Signal

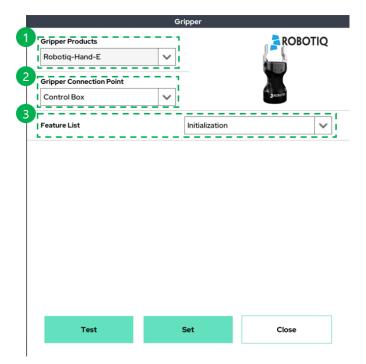
With the control box connected to the teaching pendant, and after activating the robot, set the Target Signal menu as shown above. Then press the Preview button to preview the tool flange output signal.

	Т	ool Output Con	figuration		
Memo					Preview
Tool Output Vol	tage				
Current Vo	oltage		Target	Voltage	
0			_	_	_
		Bypass	0	12	24
Digital Output Current S	ignal		-	t Signal	
0	1		0	1	
Bypass	- Low	- High			
	Set			Close	

As shown above, the Current Signal menu will change to match the settings that the user has put in the Target Signal menu.

Warning:

- 1) The user can add a comment about the Tool.out function by using the memo function at the top right of the popup window.
- 2) Before using the tool flange output, please fully understand the electrical properties of the port provided by the manufacturer.


■ Gripper Function :

This is a dedicated function for the gripper dedicated to cooperative robots. It is possible to conveniently test and insert into the program and use of cooperative robot grippers from various companies such as Robotiq's grippers. It is not a simple I/O method, but it is a function that helps users to use a gripper that is cumberso

me to write by using serial communication such as RS485 or using CRC.

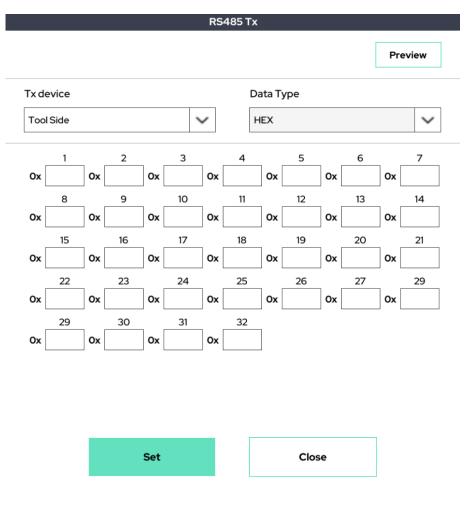
Add the gripper function to the program tree and click the added Gripper as below.

- 1. Select the gripper product.
- 2. Select gripper connection point(Control Box, Tool Flange).
- 3. Select the function to be used as the gripper.

Warning: The product list provided in the gripper function will be updated through user request.

■ RS485 Function :

This function allows the user to set the RS485/232 output for the tool flange or the control Box. Users can output in ASCII mode, or in HEX mode.


The UI Tablet (Teaching pendant) only supports UI485 Tx.

The configuration can be previewed through the Preview button on the right side of the popup window.

			Preview
l'x device		Data Type	
Tool Side	\sim	ASCII	~

Set	Close

Baud rate and other protocols (Parity bit, Stop bit) for use in Serial-Communication can be set in Setup-serial menu. Alternatively, the user can use the Set-Serial_Configuration option at the top of the project.

To use serial communication on the box side, plug a commercially available USB-Serial (RS232 / 422/485) device into the USB port.

■ Socket Function :

The Socket Function allows for socket communication. It provides the user the ability to open sockets to connect, send request messages, and retrieve data to/from specific server. Socket communication can be connected to at most 5 separate servers.

The Socket Function uses the IP settings as defined in the Setup screen. A user that would like to change the IP settings can go to the Setup-System screen.

	Soc	cket	
Number		Туре	
0	~	Close	~
		Close	
		Open	
		Read ASCII Variable	
		Read ASCII Array	
		Read String	
		Send String	

The Socket Function provides six different options as follows.

Set	Close

- Close: Closes the socket.
- Open: Opens socket and connects with server.
- Read ASCII Variable: Reads a value sent from the server. The user will need to choose a variable to be overwritten with the received value.

- Read ASCII Array: Reads an array sent from the server and puts it into an array type.
- Read String: Reads a string from the server and puts it into a string type.
- Send String: Send the specified string to the server.

Socket Function: Close

		Socket	:	
			_	
Number	I		Туре	
0	~	'	Close	~
	Set		Close	

This option closes the selected socket (0 ~ 4).

Socket Function: Open

	Soc	ket	
Number		Туре	
0	\sim	Open	`
IP		Port	
1.2.3.4		50	

Opens the selected socket $(0 \sim 4)$ and connects to the partner server. This option requires the user to set the IP address and port number of the server they would like to connect to.

Socket Function: Read ASCII Variable

		Socket	:	
Number 0		~	Type Read ASCII Variable	~
Variable List		~		
	Set		Close	

Allows the user to select one predefined variable (from the Assign Function) and overwrite the value of that variable with a value received from the server.

(Note: specific rules apply. These rules can be found at the end of the Socket Function section.)

Socket Function: Read ASCII Array

	Socket					
Number 0	~		Type Read ASCII Array	~		
Array List	~					
	Set		Close			

Allows the user to select one predefined array (from the Assign Function) and overwrite the values contained within that array with the values of an array sent by the server.

(Note: specific rules apply. These rules can be found at the end of the Socket Function section.)

Socket Function: Read String

	Socke	20	
Number		Туре	
0	~	Read String	~
String List	~		
Set		Close]

This is the function to put the ASCII string received through Socket communication into the selected string variable.

(Note: specific rules apply. These rules can be found at the end of the Socket Function section.)

Socket Function: Send String

		Socket	
Number 0	~	Type Send String	~
String			
Ex: "my_strir	ng" OR s2 (Another string na	me)	

Allows the user to send a specific string to the server. Users can enter a string directly in the field or send a predefined string type variable.

Warning:

The syntax that needs to be followed:

In order to use the Read ASCII Variable, ASCII Array, and String options provided by the robot manufacturer, the data format received from the server MUST follow the following format. If a special communication grammar/syntax is required, please consult with the manufacturer.

Read ASCII Variable

When receiving a value from the server, the value must be sent as a numerical value. (i.e. the numerical value hasn't to be contained within quotation marks)

(e.g. 123, 4567)

Read ASCII Array

When receiving an array from the server, the array hasn't to be contained within a string. In this case, there must be curly braces, and commas must be present between each number value.

(e.g. {100,200,300}, {400,500,600,700})

Read String

When receiving a string from the server, the string must be inside quotes.

(e.g. "this_is_string_from_server")

Internal variables to help socket communication:

The RB Series comes with built in variables for users to check information regarding the status of the sockets, as well as the data coming through those sockets. The internal variables are shown below. They can be accessed using the Script Function, or some similar function (i.e. If) that allows a user to access variables. The variables can be found in the List drop down after selecting Shared Data from the Type drop down menu.

SD_SOCK_IS_OPEN_ # (where # denotes the socket number $0 \sim 4$)

A provided variable that stores whether the socket is open or connected to the server.

After a user opens a socket using the Open option in the Socket function, the user can check if the socket is connected by using If (SD_SOCK_IS_OPEN_#)..

SD_SOCK_LAST_READ_# (where # denotes the socket number $0 \sim 4$)

A provided variable that stores the last character that was sent via the socket. It can be used to check whether the Read function executing normally.

For example, after using the ReadAsciiVariable option in the Socket function, users can check if the last Read function performed normally by using If (SD_SOCK_LAST_READ_0). This variable will have a value of zero if no data came from the server.

The figure below shows an example of the Socket Function.

 ShowResult You can check what value is entered in the designated variable through Debug function. In this example, Debug (return_value) is used to check the value of the variable named return_value. 	- SocketRead SocketRead SocketRead Socket o put data from the server into a specified variable. - Socket 0 ⇒ get variable : return_value This example uses Socket-ReadVariable to put data from the server into a variable named return_value. - Socket Read Fail The SD_SOCK_LAST_READ_0 !=True The SD_SOCK_LAST_READ_0 !=True - Image: Control of the server into a variable named return_value. The SD_SOCK_LAST_READ is the server. - Image: Control of the server into a variable named return_value. The SD_SOCK_LAST_READ is the server. - Image: Control of the server into a variable named return_value. The SD_SOCK_LAST_READ is the server. - Image: Control of the server into a variable named return_value. The SD_SOCK_LAST_READ is the server. - Image: Control of the server into a variable named return_value. The server. - Image: Control of the server into a variable named return_value. The server. - Image: Control of the server into a variable named return_value. The server. - Image: Control of the server into a variable named return_value. The server. - Image: Control of the server. The server. - Image: Control of the server. The server. <	 Socket 0 \$\Rightarrow\$ send request_msg \$\lambdarrow\$ list \$\Rightarrow\$ section Wait \$\Rightarrow\$ 0.5 sec Wait \$\Rightarrow\$ 0.5 sec The SD_SOCK_IS_OPEN variable is a built-in variable that contains information on whether the socket is open or connected. Through this, you can check whether it is normally open / connected. Socket 0 \$\Rightarrow\$ send request_msg \$\lambdarrow\$ This example sends a String named request_msg, which was declared earlier. 	 Assign ⇒ return_value=0 Variable type variable declare: name=return_value / initial value= 0 SocketOpen Socket 0 ⇒ open = 1.2.3.4,80 Socket-Open : Socket open and try connection to Server Wait ⇒ 0.5 sec In this example, Server's IP: 1.2.3.4 Port: 80 	⇒ request_msg="give_me_data*+
---	---	---	---	-------------------------------

■ Modbus TCP(Client) Function :

Provides the ability to request and receive data from a specific $\rm IP$ / address. Data request frequency and format can be specified.

The port number for Modbus TCP is fixed at 502 (Modbus standard).

The protocols and formats associated with Modbus TCP servers are listed in the Appendix.

Note: The Modbus TCP client function must be added at the top of the program under Pre.P.

2.3.4		l	Modbus		
2 3 4 Signal Type Address Frequency Read bit ✓ 123 5 ✓ Name Initial value Test mod_return_value 0					
2 3 4 Signal Type Address Frequency 5 ✓ Name Initial value Test 0	.2.3.4				
Signal Type Address Frequency Read bit 123 5 ✓ Name Initial value Test mod_return_value 0				7	Add
Signal Type Address Frequency Read bit 123 5 ✓ Name Initial value Test mod_return_value 0	2	3	4		
Name Initial value Test mod_return_value				у	1
mod_return_value	Read bit	 ✓ 123 	5	~]
	Name	Initial va	lue Test		
	mod_return_value	О			
	_				
		Set	c	lose	
Set Close					

1 Input the IP address of the server.

② Select the signal type (Read bit (1bit), Read word (16bit), Write bit (1bit), Write word (16bit)).

③ Input the address of the endpoint connection on the server.

④ Select the frequency of read / write requests per minute (Hz).

⑤ If using a Read method, contains the variable name to save the read value. If using a Write method, set to the variable name to output.

⑥ Initial value of the variable set in step 5.

⑦ Button to add the signal.

Below is an example of the Modbus Function settings

	Modbus				
IP 1.2.3.4					
				7	Add
2		3	4		
Signal Type	9	Address		ency	-
Read bit	~	123	5	~	
Name		Initial va	ue Test		
mod_retur	n_value] o			
5		6			
	Se	•		Close	
	Je			01030]

Example 1 Interpretation)

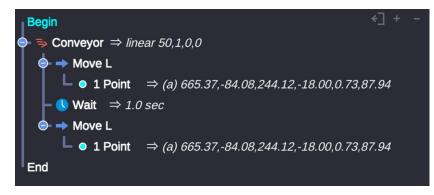
Reads a word of information (16 bits) at address 123 from the server (IP: 1.2.3.4). Stores the data in a variable named mod_return_value. Will read information at a rate of 5 times per second (5 Hz).

Example 2 Interpretation)

Writes the bit value (1 bit) stored in the variable mod_write_bit to address 456 on the server (IP: 1.2.3.4). Will write the data at a rate of 50 times per second (50 Hz).

Conveyor Function :

Allows the user to use the robot as a conveyor by generating movement at a consistent speed in a specified direction. The user can also place their own desired movement into the conveyor flow by using the MoveL, MoveLB, or Circle functions.

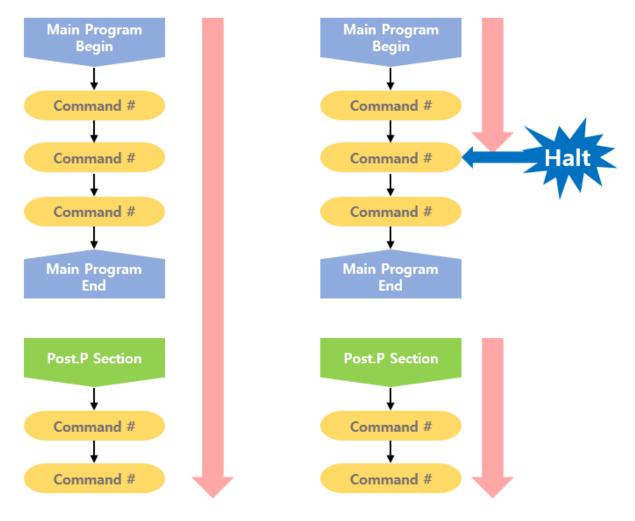

Note: Joint movement (MoveJ, MoveJB, etc.) cannot be used as a subitem of Conveyor. Only MoveL, MoveLB, MovePB, MoveITPL, Circle are supported.

Add the conveyor function to the program tree and click the function to see the options.

	Con	veyor	
Туре		Tracking Type	
Linear	~	Constant Vel	~
Speed			
50			
	(mm/s)		
Direction			
x	Y	Z	
1	0	0	
			_
	Set	Close]

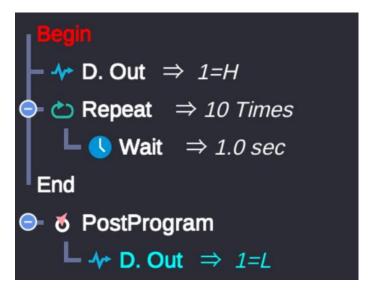
- 1 Set the move type and speed of the conveyor.
- ② Set the direction for the conveyor movement (x, y, z value is based on robot arm base coordinate system). The robot will move at the specified speed in the specified direction until the conveyor movement ends.

An example program tree using the Conveyor Function will look as follows:



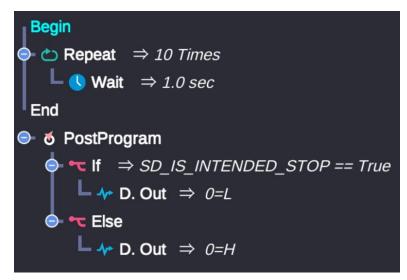
■ Post.P(Post Program) Function :

The Post.P Function allows the user to insert a command that will be executed after the program has completed.


The instructions declared within the Post.P Function are executed sequentially after the program ends.

The execution of Post.P proceeds as shown in the diagram below.

Example 1)


At the beginning of the program the D.out function sends a High signal to port 1. However, the program did not send a Low signal before the end of the program. By using the PostP. Function, when the program ends, port 1 will automatically send a Low signal.

As in the example above, the Post.P function can be used for safety functions.

Example 2)

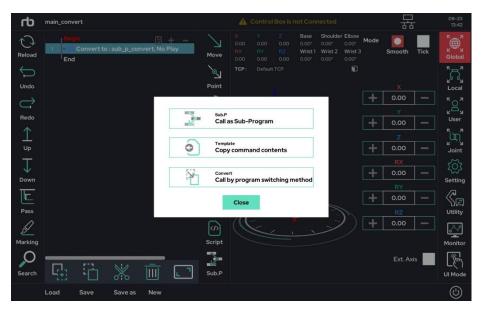
In the below example, the PostP. Function is used to test whether the program ends normally. If the program ends normally, the warning lamp (connected to D.out No. 0) will not be turned on. If the program ends abnormally, the warning lamp will be turned on.

The SD_IS_INTENDED_STOP flag in this example is a system internal variable and is always initialized to 0 (false) when the program starts. If the program stops normally by user's intention, this variable will be 1 (true). If the program stops abnormally for various reasons, this variable remains false.

Any intended End signal by the user, such as pressing the UI "end" button, receiving an I / O stop signal, ending by other communication, etc., will be determined to be a normal end. (SD_IS_INTENDED_STOP = true)

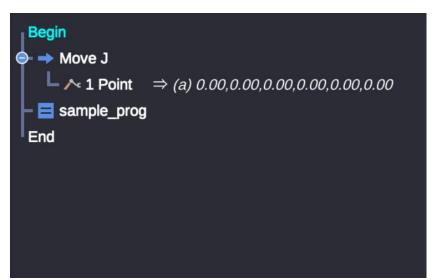
If the program exits due to singularity access or exits due to command syntax problems, it is determined that the shutdown is not user intended. (SD_IS_INTENDED_STOP = false)

- The functions defined in the Post Program will be performed even if the program did not terminate normally (e.g. when users press Halt in an Alarm popup).
- Commands related to the movement of the robot arm, such as MoveJ and MoveL, cannot be used within Post.P
- Post.P works only within a top-level program. If a subprogram invokes the Post.P function, the Post.P portion of the subprogram will not be executed.


■ Template Function :

This function inserts another pre-made program file (teaching file) into the current document in a modifiable form.

The Template function is similar to the Sub.P function. However, any file that is loaded by the Template function can be modified in the current program.


If you click the Sub.P icon in the program, the following pop-up window appears, and at this time, click 'Template'.

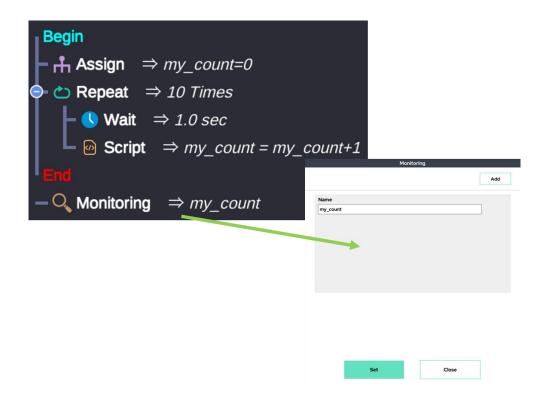
Assume that a project named "sample_prog" has been created as shown below.

Begin \Rightarrow 1.0 sec Wait \Rightarrow 3 Times Repeat Alarm \Rightarrow hello D. Out \Rightarrow 0=H, 5=H End

example 1) sample_prog is called by Sub.P

example 2) sample_prog is called by Template

If the file is loaded into Sub.P as shown in Ex.1), the project will execute, but it is impossible to modify the file in the current program. In addition, when the loaded subproject is changed, the operation of the parent program is also changed.


If the file is imported by the Template function as shown in Ex2), it is loaded in a form that can be modified in the current program. Once copied to the template, the contents of the copied subprogram are not changed even if the original is modified.

■ Monitor Function :

This function is used to select variables (single variables, arrays, point variables, etc.) that the user wants to observe in real time while the program is running.

Variables declared in the Monitor function can be viewed by clicking the monitor icon on the right side of the Make / Play page.

In the program example above, a variable named 'my_count' is declared. The Repeat function increments 'my_count' by 1 every second.

By using the Monitor function, the user can select the 'my_count' variable as the object to observe.

As shown in the above image, in the Monitoring window, the user can enter the name of the variable to be observed.

If the user wants to observe the value of the monitored variable, they can click the Monitor icon on the right side of the screen.

After that, if the user presses the play (\triangleright) button, they can observe the value of 'my_count' increasing every second.

■ Pattern Function :

This function allows the user to define repetitive behavior.

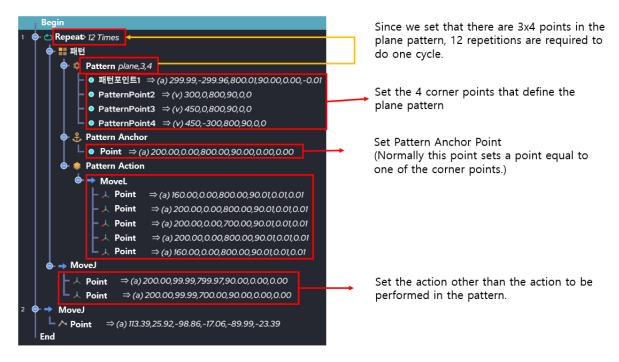
By defining information about the operation space, and by defining which actions to be performed at each location, the user can set the robot to perform the same action at every point in space.

The user can implement palletizing through this function.

There are three sub settings.

Pattern Property:

Define the target space for the repetitive motion.

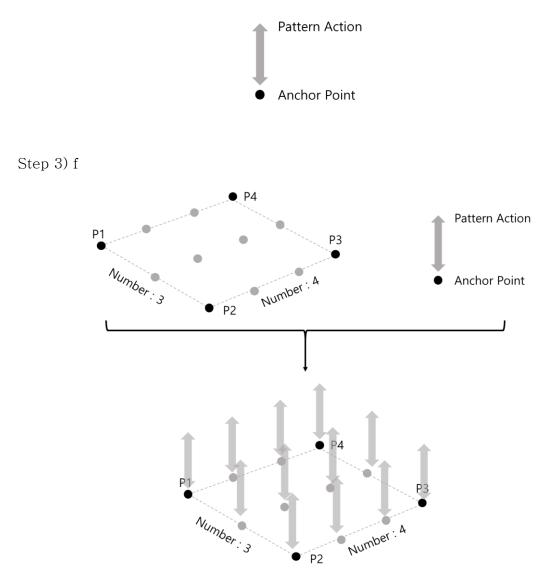

The property supports various shapes such as straight line, plane, 3D cube, and arbitrary point.

Pattern Anchor:

The Reference point of the action defined in the Pattern Action.

Pattern Action:

This setting defines the motion relative to the reference point set in the Pattern Anchor. The defined relative behavior is repeated at every pattern point set in the Pattern Property. The following is an example of Pattern function.


Step 1) Set the Pattern Property as shown below.

Pattern Property						
Line	P2	Point Num p1~p2				
Plane	P1 P2 P2	Point Num p1~p2 3	Point Num			
Cube	P5 P8 P4 P7 P1 P6 P3	Point Num p1~p2	Point Num	PointN	Num p1~p5	
Points	Pn P1	Point Number				
		Set	Close			

With the above settings, the following repeat points are formed in space.

Step 2) Using the Pattern Anchor and the Pattern Action, define the relative movement as below

■ Pinpoint 기능 :

		Pin Po	int		
Change Name			Optio Linea		\sim
Type Absolute		\sim			
Get X 0.00 RX 0.0 Base 0.00 Wrist1 0.00	Y 0.00 RY 0.0 Shoulder 0.00 0.00 Wrist 2 0.00 0.00	Z 0.00 RZ 0.0 Elbow 0.00 Wrist 3 0.00			
	Set			Close	

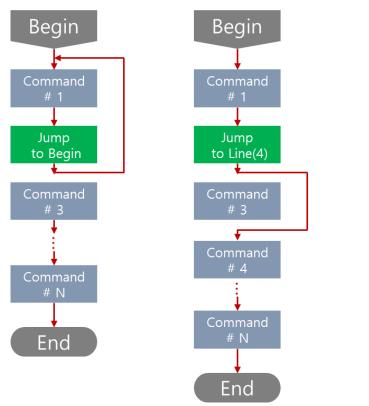
This is a special function for storing posture information only. This is a function to save information of a specific posture/position as a Point variable. If you create a PinPoint while teaching a specific posture and give it a PinPoint name, the posture information is converted into a Point variable.

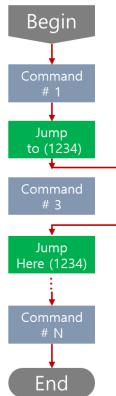
The information saved as Point variable can be used in other operation commands/settings.

		Jump	
Jump Type			
Jump to Begir	~		
* Jump to thie f	irst line of the program		
_			7
	Insert Code	Close	

This function allows you to discontinuously control the program flow. You can change the program flow through several sub-options.

Option) Jump to Begin


Move the program flow to the first line.


Option) Jump to Line

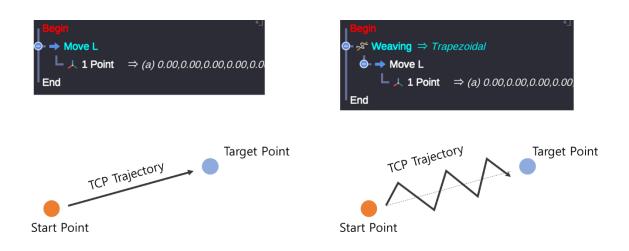
Move program flow to a specific line number.

Option) Jump To / Here

Move program flow to a specific address value. JumpTo calls the address value you want to move, and JumpHere writes the address value.

■ Replay 기능 :

		Replay	/	
저장된 모션 파일				
	`	/		
▶ 시작점으로 접근				
L-type	`	/		
Velocity	0%	A	cc	O%
		_ 4		
▶ 저장 모션 재생 빙	·식			
L-type	`	/ 1	ntended	\sim
	0%		cc	0%
Velocity	0%	^		0%
•		- (
Finish at		S	toppping time	
]
	Set		Close	

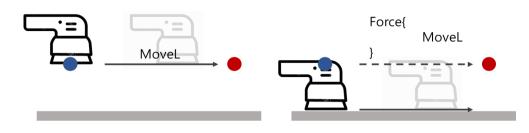

This function is to play the recorded teaching motion. Motion recording is performed in the settings of the Make page. If you select the name and motion speed/property of the recorded motion, the recorded motion is played again. ■ Weaving 기능 :

It is a special function for welding weaving. TCP trajectories are automatically changed to set the weaving actions included under the weaving function. Simply select and enter the desired weaving shape and weaving options.

		v	Veaving		
Weaving Sh	ape				
Trapezoid	al	~	•		
	⟨3D view⟩ Set Point1 P Set Point1 P Set Point1 P Set Point1	1	cale Bending(s)	(mm) Velt (mm/g)	Vel2 (mmn)) $\leftarrow \Delta T4(0)$
L1 (mm)	L2 (mm)	Vel1(mm/s)	Vel 2 (mm/s)	Bending (%)	Scale (%)
0	0	1	1	0	100
∆T1 (sec)	∆T2 (sec)	ΔT3 (sec)	∆T4 (sec)	Offset (mm)	Swing (deg)
0	0	0	0	0	0
					Get
Set-Point 1					Get
	Y	z	Rx	Ry	Rz
x	Y	Z	Rx	Ry	Rz
X Set-Point 2					Rz Get
Set-Point 1 X Set-Point 2 X	Y	z z	Rx Rx Rx	Ry	Rz

The left side of the figure below is for normal operation only. If this motion is put as a sub-item of weaving, TCP trajectory reflecting the weaving trajectory is drawn (in the example on the right, in the case of triangle wave weaving).

■ Force 기능 :



This is a function for force control. The movements below the force control function automatically change the trajectory to give the set force.

		Force	Control		
Mode Frame		~	Sensor Extern	al	~
Frame			Frame	Global	\sim
Se	elect	Target Value		Speed Limit	
x		0	(N)	0	(mm/s)
Y		0	(N)	0	(mm/s)
z	•	-10)(N)	100	(mm/s)
RX		0	(Nm)	0	(deg/s)
RY		0	(Nm)	0	(deg/s)
RZ		0	(Nm)	0	(deg/s)
Advanced	Settings				
Г					
L					
		Set		Close	

Select and input the desired force control mode, the sensor to be used for force control, and the force control target value.

The left side of the figure below is for normal operation only. The motion starts in the air above the plane and ends in the air. If you put this action as a sub-item of force control as it is, it will change to the action of pressing the ground with a certain force (when setting the force control to the ground).

<Before applying force control>

<After applying force control>

Arcweld Function :

		Arc	Weld				
Arc Function Arc On		~	Sub Opt Option				~
1) Early waitir	ng				me s) 0		
2) Condition	Setting						
Speed Sett	ing	Speed (mm/s)	10	Acc (mm/		0	
Welding Cu	rrent			Ampe (A)		0	
Voltage Tra	ansmission Condition	Offset f	rom Current	Volta (V)		I	
3) Arc Start S	Signal Generation						
4) Time to W	ait for Arcing to Occur	r			me s) 1		
5) Waiting fo	r Follow-up				me s) 0		
Option : Paus	e status operation			Norn	nal Pau	se	\sim
Option : Spee	ed Bar control			Defa	ult		\sim
	Set			Close			

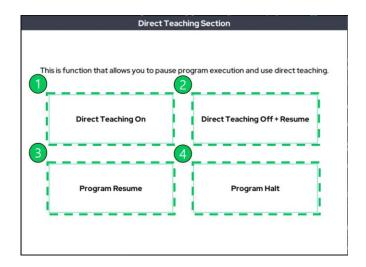
This is a special function for arc welding. A special macro function designed to quickly enable implementable functions, such as Wait / D.out.

To use this function, the Device field on the Setup page must precede setting the parameters and connection information for the welder.

As illustrated above, this feature allows quick and easy insertion of weld speed/weld current / voltage settings / safety signal processing options into the program to be used for welding.

■ TCP Set Function :

		Tool Chan	ger	
List				
Default TCP		\sim		
	Set		Close	


The ability to change the TCP value during program execution with the TCP value pre-saved in Setup' Tool List. It does not change again until the TCP value is replaced or the program is shut down.

■ Manual Direct Teaching Function :

Mode On/Off			
Direct teaching section O	ff 🗸 🗸		
* This is function that allo	ows you to pause pro	gram execution and	use direct teaching
	Set	Close	

A feature that enables direct teaching during program execution. When mode On, the program pauses when the manual direct teaching command is executed and a pop-up window as shown below appears on the screen.

You can select four features in the pop-up window.

- ① Use the direct teaching feature while the program is paused.
- (2) If you used the direct teaching feature in ①, turn off the direct contact function and resume the program.
- ③ Ignore the manual operation and resume the program.
- ④ Exit the program.

■ G Code Function :

File Name	File Format
	.gcode 🗸 🗸
Reference Coordinate	User Coordinate 0
Initial Plane	XY plane 🗸
Initial Velocity (mm/s) 10	Max. Velocity (mm/s) 20
Offset (mm) X 0	Y O Z O
* M code and S code are not s	obot be sure to check it by simulation. supported.
	-

This function allows the robot to move to the path stored in the G code. The G code file must be stored in a folder at the specified path (₩Tablet₩Android₩data₩com.rainbow.cobot₩files₩work) in advance to be available.

Enter the name of the G code file that user saved in File Name. The plane in which the robot moves can then specify the xy, yz, and zx planes of the user-specified coordinate system as the starting planes.

■ Interface Function :

The interface function is for connecting external devices such as PLC, HMI, and PC with the control box. The list of external devices that can be used using the interface is as follows.

- HMI(MemLink) Proface, TOP
- PLC(MC Protocol) Mitsubishi PLC
- Mulic Player
- PLC(XGT Protocol) LS Electric PLC
- CSV File
- Pickit
- Modbus Client(Interrupt)

Because each external device has different detailed features available, you should refer to the following information.

HMI(MemLink)-Connection Configure

	Inter	face	
Device Type		Function	
HMI (MemLink)	\sim	Connection Configure	\sim
Socket Number		Socket number 0	~
HMI IP Addr 0	. 0	. • . •	
HMI Port Num		ο	
When initial Connection Fail		Alarm Popup	~
When Comm-Error occur		Alarm Popup	~
Communication Time out		1.0 sec (default)	\sim
Set			

A function that connects communications between the HMI and the RB system. User will enter the socket number, IP address, and port. User can also decide whether to turn on or ignore alarm pop-up in the event of a connection failure or communication error and set a communication timeout time.

HMI(MemLink)-Write Single variable

		Interfac	ce		
Device Type			Function		
HMI (MemLink)		\sim	Write Single v	ariable	~
Rob	ot System			HMI Device	
Trans. Value	0	⇒	Address	0]
	able name or numbe ress (0~9999) value				-
					-
					-
					-

The ability to enter values for one address of HMI. Enter a number or variable name for the transfer value.

HMI(MemLink)-Read Single variable

		ace	
Device Type		Function	
HMI (MemLink)	\sim	Read Single variable	~
Robot System		HMI Device	
Variable Name 0	¢	Address 0	

The ability to read values from one address in HMI. The read values are stored in the variable you specify (Variable).

HMI(MemLink)-Write Array

Device Type		Function
HMI (MemLink)	~	Write Array 🗸
Rol Array Name Length	O System	HMI Device
-	y variable name to be tra	
Length : Number	y variable name to be tran of data to be transmitted address value (0~9999) f	
Length : Number	of data to be transmitted	
Length : Number	of data to be transmitted	

The ability to enter numbers from the starting address of the HMI to the specified number of addresses. The pre-declared array must be written to Array Name and should not exceed the maximum length of the array, 20.

HMI(MemLink)-Read Array

Device Type	F	Function	
HMI (MemLink)	\sim	Read Array	
Robot System		НМІ	Device
Array Name	⇒	Start Addr 0	
		Length 0	
Length : Number of data to be re	99) value to read f equested	from HMI	
		rom HMI	

The ability to read data from the starting address of HMI to the specified number of addresses. The pre-declared array must be written to Array Name and should not exceed the maximum length of the array, 20.

PLC(MC Protocol)-Connection Configure

Device Type		Function	
PLC (MC Protocol)	\sim	Connection Configure	~
Socket Number		Socket number 0	~
PLC IP Addr 0	. 0	. 0 . 0	
PLC Port Num		θ	
Protocol Type		MC 1-E Binary	~
When initial Connection Fail		Alarm Popup	~
When Comm-Error occur		Alarm Popup	~
Communication Time out		1.0 sec (default)	~
Set		Close	

A function that connects communications between the Mitsubishi PLC and the RB system. User will enter the socket number, IP address, and port. User can also decide whether to turn on or ignore alarm pop-up in the event of a connection failure or communication error and set a communication timeout time.

PLC(MC Protocol)-Write Single variable

Device Type			Function	
PLC (MC Proto	ocol)	\sim	Write Single variable	`
Socket Number			Socket number 0	`
Ro	bot System		PLC	
Trans. Value	0		Address D V 0	
Trans. Value : Va	riable name or numb	er to be tra	ansferred to PLC	
	riable name or numb Idress value to send		ansferred to PLC	

The ability to enter values for one address of PLC. Enter a number or variable name for the transfer value.

PLC(MC Protocol)- Read Single variable

		Interfa	ace	
Device Type			Function	
PLC (MC P	PLC (MC Protocol)		Read Single variable	
Socket Number			Socket number 0	
	Robot System		PLC	
Variable N	ame 0	4	Address D V 0	
	ne : Variable name to save		read from PLC	
	te : Variable name to sav		read from PLC	
			read from PLC	

The ability to read values from one address in PLC. The read values are stored in the variable you specify (Variable).

PLC(MC Protocol)- Write Array

			Function	
PLC (MC Proto	PLC (MC Protocol)		Write Array	
Socket Number			Socket number 0	
Ro	bot System		PLC	
Array Name		1 =	Start Addr D V	0
Length	0			
	of data to be transm address value to be		PLC	
Start Addr : Start			1	

The ability to enter numbers from the starting address of the PLC to the specified number of addresses. The pre-declared array must be written to Array Name and should not exceed the maximum length of the array, 20

PLC(MC Protocol)- Read Array

Device Type		Function		
PLC (MC Protocol)		Read Array		
Socket Number		Socket numb	er O 🗸	
Robot System			PLC	
Array Name		Start Addr	D 🗸 0	
8		Length	θ	
Array Name : Array variable nam Start Addr : Start address value 1			-	
Starr Addr : Starr address Value Length : Number of data to be re	equested			

The ability to read data from the starting address of PLC to the specified number of addresses. The pre-declared array must be written to Array Name and should not exceed the maximum length of the array, 20.

Music Player

	Inter	face		
Device Type				
Music Player	~			
Media Name				
		mp3		`
Option 1: Play method		Wait U	ntil media end, Blo	ock
Option 2: Volume (%)		100		
			8	
Se	t		Close	<u></u>]

This function plays an mp3 file while the program is running. The Music driver must be installed through the RB Driver, and the mp3 file you want to play must exist in the specified path.

PLC(XGT Protocol)-Connection Configure

Device Type		Function		-
PLC (XGT Protocol)	~	Connection Config	gure	~
Socket Number		Socket number 0		~
PLC IP Addr 0	. 0	. 0	. 0	
PLC Port Num			0	
Machine Type		ХGК		~
When initial Connection Fail		Alarm Popup		~
When Comm-Error occur		Alarm Popup		~
Communication Time out		1.0 sec (default)		~
Base Number			0	
Slot Number			0	

A function that connects communications between the LS Electric PLC and the RB system. User will enter the socket number, IP address, and port. User can also decide whether to turn on or ignore alarm pop-up in the event of a connection failure or communication error and set a communication timeout time.

PLC(XGT Protocol)-Write Single variable

	Interface
Device Type	Function
PLC (XGT Protocol)	V Write Single variable
Socket Number	Socket number 0
Robot System	PLC
Trans. Value	→ Address D v 0
Trans. Value : Variable name or numbe Address : PLC address value to send v	
Set	Close

The ability to enter values for one address of PLC. Enter a number or variable name for the transfer value.

PLC(XGT Protocol)-Read Single variable

			face
Device Type			Function
PLC (XGT P	PLC (XGT Protocol)		Read Single variable
Socket Numb	er		Socket number 0
	Robot System		PLC
Variable Na	me 0] ¢	Address D V 0
	e : Variable name to sav ress value to read from		
Aaaress : Ada			

The ability to read values from one address in PLC. The read values are stored in the variable you specify (Variable).

PLC(XGT Protocol)-Write Array

		Function		
PLC (XGT Protocol) ~	Write Array		
Socket Number		Socket number 0	Socket number 0	
Robot S	ystem	PLC		
Array Name	=	Start Addr D 🗸 0		
Length 0				
Start Addr : Start addr	ess value to be saved in	PLC		
			.Martin	
		•		

The ability to enter numbers from the starting address of the PLC to the specified number of addresses. The pre-declared array must be written to Array Name and should not exceed the maximum length of the array, 20

PLC(XGT Protocol)-Read Array

Device Type		Function		
PLC (XGT Protocol)	\sim	Read Array		~
Socket Number		Socketnumb	er O	~
Robot System			PLC	
Array Name	\$	Start Addr	D 🗸 0	ľ.
		Length	0	
Array Name : Array variable nai	me to store the v	value read from PL	C	
,				
Start Addr : Start address value				
	e to read from Pl			
Start Addr : Start address value	e to read from Pl			
Start Addr : Start address value	e to read from Pl			
Start Addr : Start address value	e to read from Pl			1
Start Addr : Start address value	e to read from Pl		1.00	
Start Addr : Start address value	e to read from Pl			
Start Addr : Start address value	e to read from Pl			

The ability to read data from the starting address of PLC to the specified number of addresses. The pre-declared array must be written to Array Name and should not exceed the maximum length of the array, 20.

CSV File-Read String

	Inter	face	
Device Type		Function	
CSV File	~	Read String	~
File Name		File Format	
		. csv	~
	Row :	θ	
	Column :	0	
	* Row and co	lumn numbers are zero-based.	
String variable name to st	ore :		
		_	
		L.	
		த	
	Set	Close	

This function reads a string from a CSV file. The CSV file must be saved within the specified path.

CSV File-단일 숫자 읽기

Device Type		Function
CSV File	~	Read Variable
File Name		File Format
		. CSV
	Row :	θ
	Column :	0
	* Row and	column numbers are zero-based.
Variable name to store :		
		-
		CSV
	_	

This function reads a single number from a CSV file. The CSV file must be saved within the specified path.

Pickit-Connection Configure

Device Type		Function	
Pickit	\sim	Connection Configure	~
Socket Number		Socket number 0	~
Pickit IP Addr 0	. 0	. 0 . 0	
Pickit IP Port Num		5001	
When initial Connection Fail		Alarm Popup	~
When Comm-Error occur		Alarm Popup	~
			Ş

A function that connects communications between the LS Electric PLC and the RB system. User will enter the socket number, IP address, and port. User can also decide whether to turn on or ignore alarm pop-up in the event of a connection failure or communication error.

Pickit -Send Command

Device Type	Function
Pickit 🗸	Send Command
Socket Number	Socket number 0
Command	RC_PICKIT_NO_COMMAND
Payload 0	θ
Payload 1	θ
Communication Time out (sec)	3
	u

Set the command to be sent to Pickit and the data according to the command.

Modbus	Client(Interrupt)	-Connection	Configure
--------	-------------------	-------------	-----------

Modbus Client (Interrupt)	Connection Configure	
	Connection Connigure	~
Socket Number	Socket number 0	~
Server IP Addr 0.	. 0 . 0	
Server Port Num	502	
Device ID	255	
When server connection Fail	Alarm Popup	~
When Comm-Error occur	Alarm Popup	\sim
Communication Time out	1.0 sec (default)	~
	Mod	lbu

This is a function that connects the RB system as a client in Modbus communication. User will enter the socket number, IP address, and port. User can also decide whether to turn on or ignore alarm pop-up in the event of a connection failure or communication error and set a communication timeout time.

Modbus Client(Interrupt) -Write Single variable

Device Type			Function		1
Modbus Client (In	nterrupt)	\sim	Write Single	e variable	`
Socket Number			Socket num	nber 0	`
Robo	ot System			Server (Slave)	
Trans. Value	0		> Address	FC6 🗸 0	
				ver	
Trans. Value : Varial Address : Server ad					dbu
					dbu

This is a function to input word type data to one address through Modbus communication. At this time, enter the name of a number or variable for the transfer value.

Modbus Client(Interrupt) -단일 숫자 읽기

	Inte	rface	
Device Type		Function	
Modbus Client (Interrupt)	\sim	Read Single variable	~
Socket Number		Socket number 0	~
Robot System		Server (Slave)	
Variable Name 0		Address FC3 ✔ 0	
Variable Name : Variable name to Address : Address value to read :			dbus
Set		Close	

This is a function to read the value of one word type data from the address through Modbus communication. At this time, the read value is saved in the assigned variable. Modbus Client(Interrupt) -다중 숫자(배열) 쓰기

		Function
Modbus Client	(Interrupt)	Write Array
Socket Number		Socket number 0
Ro	bot System	Server (Slave)
Array Name		Start Addr FC 16 🗸 0
Length	θ	
Length : Number	of data to be transmi address value to be s	
Start Addr : Start		Modbu

This is a function to input word data from the start address to the specified number of addresses through Modbus communication. At this time, the previously declared array should be written in 'Array Name' and the length should not exceed 20, the maximum length of the array.

Modbus Client(Interrupt) -다중 숫자(배열) 읽기

	Interi	lace		_
Device Type		Function		
Modbus Client (Interrupt)	\sim	Read Array		~
Socket Number		Socketnumb	er 0	~
Robot System		S	erver (Slave)	
Array Name	¢	Start Addr	FC3 🗸 0	
		Length	θ	
Start Addr : Start address value to rea Length : Number of data to be reques		rver	Mode	
Set		Clos		

This function reads data from the start address to the specified number of addresses through Modbus communication. At this time, the previously declared array should be written in 'Array Name' and the length should not exceed 20, the maximum length of the array.

■ Extension Board Function :

				Extensio	on Bo	ard					Exte	nsion Board	
Memo			[Digital ou	tput		~	Preview	Memo	D	Analo	g output 🗸	review
Configuration									Config	guration			
				Current	t Sign	al					Cur	rent Signal	
	0 1	Ξ	4 5	=	8 9	Ξ	12 13	2			0 1	2 3	
	2	-	6	-	10	-	14	-			Tar	get Signal	
	3	-	7	-	11	-	15	-			D 1	2 3	
				Target	Signa	al							
	0	-	4	-	8	-	12	-					
	1	-	5	-	9	-	13	_					
	2	-	6	-	10	-	14	_					
	3	-	7	-	11	-	15	_					
- Bypass		Low		🗕 Higt	'n								
		Set					Close			s	et	Close	

A feature that controls digital/analog output when purchasing and using an extended I/O module. The method of use is the same as the existing D.output and An.output.

■ User Input Function :

	User	Input	
Variable Form			
Variable	~		
Variable Selec	ction		
	~		
«) (aniabla (An			-1164
* Variable/An Program Flow		an be changed by User Input in the mid	ale of 1
	Set	Close	

This feature is used when a user wants to randomly change the value of a specific variable while the program is running. Available for Variable/Array/Point/String/Global/ROM variables.

When launched, a pop-up window will appear as follows:

	Change User Variable Values
Variable Form Variable	
Variable Name test	
Applied Value	
Typing Example	
Variable : Unit number	Ex: 123.45
Array : array type	Ex: {10,20,30}
Point : 6 elements array	EX: {100,200,300,0,90,0}
String : characters	EX: "hello"

You can select three features in the pop-up window.

- ① Resume the program without replacing the corresponding variable.
- ② Enter the data you want to change in 'Applied Values', then press to reflect the data you entered in 'Applied Values', and then resume the program.
- ③ Exit the program.

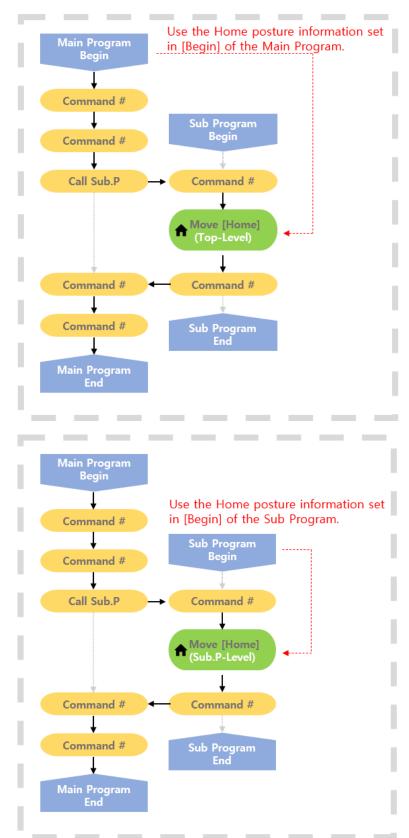
■ Touch Sensing Function:

		Touch	Sensing		
Function				Touch Sensing (Config 🗸 🗸
Search Speed		Speed (mm/s)	10	Acc (mm/ss)	100
Option	4 point	s type	\sim	N/A	~
Line 1 Setting	Line Start Point			_∠° Move	e 🛃 Get
Point 1A & B	X 0.00 Y	0.00 Z	0.00 RX	0.0 RY 0.0	0 RZ 0.0
Line 2 Setting	Line End Point			✓L [°] Move	e 💽 Get
Point 2 A & B	X 0.00 Y	0.00 Z	0.00 RX	0.0 RY 0.0	0 RZ 0.0
	Line Outer Point			✓ Move	e 🛃 Get
	X 0.00 Y	0.00 Z	0.00 RX	0.0 RY 0.0) RZ 0.0
	S	et		Close	

Touch sensing is intended to utilize welding applications. Detects the movement of the base material and reflects the direction of movement of the base material and is used for welding.

A detailed description of this feature is provided in a separate manual.

Home :



Home					
Target Posture		Project			
Project Home Posture	\sim	Top-Level (Main) Project	\sim		
Movement Type			2 - C		
Move J Type	\sim				
Speed	40%	Acc	10%		

This function moves the robot to the target point. The project home posture is the posture set in Begin.

Home function is a function to move the robot with Project Home Posture or Joint Zero Posture. At this time, user can select the movement type. When going to the Project Home Posture, user can select Project Home Posture of the main program and Project Home Posture of the subprogram. The diagram below shows the difference between the case of going to the Project Home Posture of the main project and the case of going to the Project Home Posture of the subproject when using the home function within the subprogram.

D.Weld :

		Digital V	Veld		
Weld Machine		Mode		Option	
Select	~	Select	~	N/A	~

Set Close

It is a function that can use the digital weld machine. After selecting the weld machine to be used, user can proceed with 'Weld Start', 'Weld Off', and 'Weld Setting'.

Event Thread Call :

0	\sim	
12528* 5		


This is a function to run the event thread in the main program. The event thread is executed only when the event thread call is executed in the main program. In this case, the number of the event thread to be executed can be selected.

This function is to convert the main program. Unlike the existing Sub.P and Tmplate, this is a function that changes the main program itself, so the program displayed on the UI will also change.

If you click the Sub.P icon in the program, the following pop-up window appears, and at this time, press Call program conversion method.

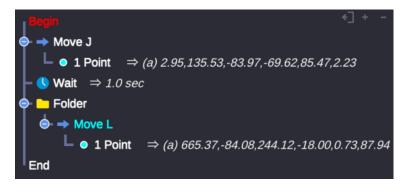
If you select the program you want to switch to in the file explorer popup that appears after clicking, the command is created as shown below.

main_	_convert	
1	Begin Convert to : sub_p_convert	A H H
	End	

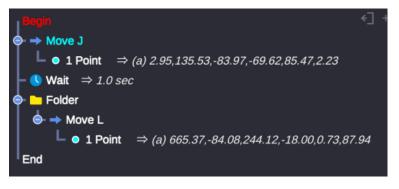
7.5 EDITING THE PROGRAM

The bar on the left of the screen contains icons that allow a user to change the order or structure of the instructions entered in the program tree.

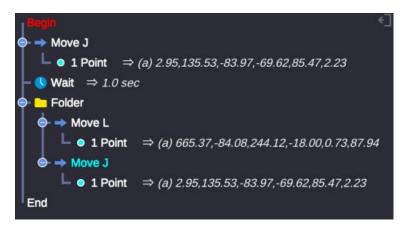
Please refer to section 6.1 for the description of the edit icon. The example explains how to edit the program.


Step1) Select the command to cut. The selected command will be shown in blue. In the example below, the MoveL line is selected.

Step2) Press the Cut button. Once Cut is clicked, the line disappears from the program tree.



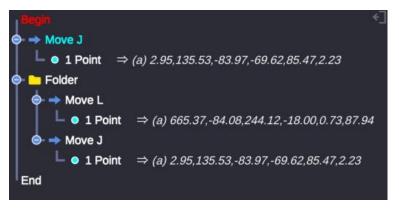
Step3) Click the location to paste and click the Paste button. In the example, the MoveL command is pasted inside the Folder.



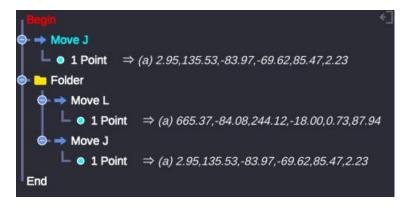
Step1) Select the item to copy. The selected command will be shown in blue. In the below example, the MoveJ line is selected.

Step2) Press the Copy button.

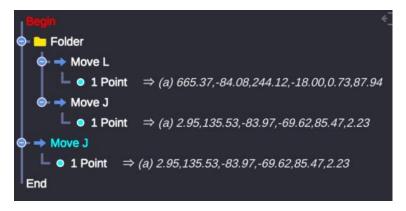
Step3) Click desired location and click the Paste button. In the example, the MoveJ command is pasted under the Folder.



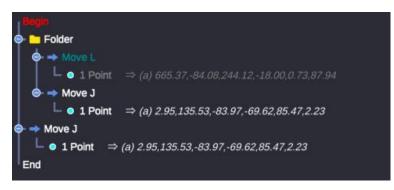
Step1) Select the command to delete. The selected command will be shown in blue. In this example, the Wait command is selected.



Step2) Click the Del button. The command has been removed as shown below.



Step1) Select the command to move. The selected command is shown in blue. In this example, MoveJ at the top is selected.


Step2) Click the Down button to move MoveJ down as shown below.

Step1) Select a function to temporarily hold / block its execution. The selected command is shown in blue. In this example, the MoveL command is selected.

Step2) Click the Pass icon. The command turns dark as shown below and will not execute. To undo, simply select the command again and press the Pass button again.

7.6 PROGRAM MANAGEMENT

Allows the user to save, load, or create a project

■ Save Project

To save the current project, click the save icon on the bottom left side of the UI work screen. If there is no change from the existing saved contents, it is shown as below.

	<u>~</u>	
	Warning	
No changes.		
	ок	
	UK	

To load a saved project, click the FILE button at the bottom of the UI to display a list (shown below). If a user selects a file from the list, it will be loaded in as the current program. If there are unsaved changes to the current project, a prompt will request the user to save.

Note: Only recently used files will appear in the list.

To open a file, users can click the Load option. Clicking Other Program button will open the File Explorer, which allows the user to look through saved files.

■ Save As

To save a program with a different name, click the Save As option in the FILE list. The following popup window will appear. Using this window, users can save their current file with the desired program name. The program name cannot bet set to "default," as it is already in use by the system.

Ъ	default55		▲ Control Box is not Connected 금급	07-20 09:06
C) Reload	1	$\begin{array}{c} \leftarrow \rightarrow \uparrow \bigcirc \blacksquare \\ \hline \bigcirc \text{ Recent:} \end{array}$	(storage/emulated/0/Android/data/com.rain (mooth Tick	لا لا Global
Undo	2 - S Wait - 10 End	work	default55.wsl	Local
			in test.wsl	
Redo			0.00 —	User
			<u>z</u> 0.00 —	لی پ Joint
\downarrow		☆ 🕀 🔟 default	.wsl Save Close RX	(je
Down			Repeat	Utility {္လ်ို
Pass			D.Out	Setting
Marking			Seript	<u>_</u>
				Monitor
T.View) 💥 🔟 🕻	Sub.P	3D View
	Load Save	Save as New		٢

7.7 OPERATION UTILITIES

On the right side of the Make screen, there are other utility functions to help a user operate the system.

- Utility: A collection of additional functions, such as the posture saving function, the system input / output information view function, and the system output test function. These functions are also frequently used.
- Setting: Allows the user to use the jog function, as well as other utility functions to help the user's experience.
- Monitor: Provides a window that allows the user to monitor both system and user variables in real time.
- UI Mode: UI mode can be selected according to the user's level and the user's purpose.

■ Utility sub-functions

[Utility-Posture]

Option			
Posture			
You can sa	ve the posture t	hat you use fi	use it again.
Saved Num	n		
Pose-0			Ĩ
Base	Shoulder	Elbow	07
0.00	0.00	0.00	l l
Wrist 1	Wrist 2	Wrist 3	
0.00	0.00	0.00	(E = 3)
	J		
			Get current Posture
			Save current Posture
			Maria da Carrad Dastrina
			Move to Saved Posture

Up to 20 frequently used postures can be saved and used on the UI tablet.


Press the Get button to get the current position information and press the Set button to save it.

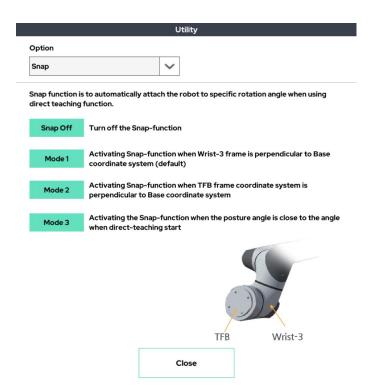
Hold down the Move button to move to the saved position.

[Utility-Input Signal View]

npu	t Signal \	/iew			~						
			Control	Box In	put				Tool	Input	
DIGITAL									DIG	ITAL	
0	-	4	-	8	-	12	-	0	-	1	-
1	-	5	-	9	-	13	-				
2	-	6	-	10	-	14	-				
3	-	7	-	11	-	15	-				
			ANA	LOG					ANA	LOG	
	0		1		2		3		0		1
	0		0		0		0		0		0
-	Bypas	SS	- L	ow	-	High					

Input signal monitoring window for control box and tool flange.

[Utility-Output Signal View]


Output signal monitoring window for control box and tool flange.

[Utility-Status]

			Utility		
Option			٦		
Status		~			
Ampere			Temperatu	ire	
Base	Shoulder	Elbow	Base	Shoulder	Elbow
0.00A	0.00A	0.00A	0°C	0°C	0°C
Wrist 1	Wrist 2	Wrist 3	Wrist1	Wrist 2	Wrist 3
0.00A	0.00A	0.00A	0°C	0°C	0°C
					Send
Display Uso Coordinate	er Coordinate	Coordi	nate 1	Coo	rdinate 2

This window allows the user to see the robot arm's current and temperature. It also shows the user coordinate system settings.

[Utility-Snap]

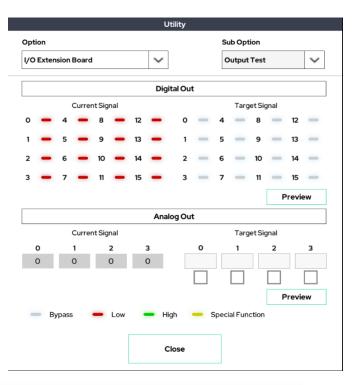
Snap mode selection window to be applied when using direct teaching mode.

[Utility-Box Output Test]

Box Ou	tput I	est				~								
						Digi	tal Ou	t						
		Curre	nt Sig	nal						Targ	et Sig	gnal		
0 -	4	-	8	-	12	-	0	-	4	-	8	-	12	-
1 🗕	5	-	9	-	13	-	1	_	5	-	9	_	13	-
2 🗕	6	-	10	-	14	-	2	-	6	-	10	-	14	-
3 🗕	7	-	11	-	15	-	3	-	7	-	11	-	15	-
												P	revi	ew
						Anal	og Ou	t						
		Curre	nt Sig	nal						Targ	et Sig	gnal		
o		1		2		3		0		1		2		3
0		0		0		0								
												P	revi	ew
_	Bypas	s	-	Low		- Hi	gh	- 9	Speci	ial Fun	ction			

This window allows you to test the output of the control box.

	Utility			
Option				
Tool Output Test	\sim			
	Tool Output Voltag	e		
Current Voltage		Target	/oltage	
0	Bypass	0	12 24	
	Digital Output			
Current Signal		Target	Signal	
0 1		ο	1	
		_	_	
			Preview	
👄 Bypass 🛛 👄 Low	🗕 High			
	Close			


[Utility-Tool Output Test]

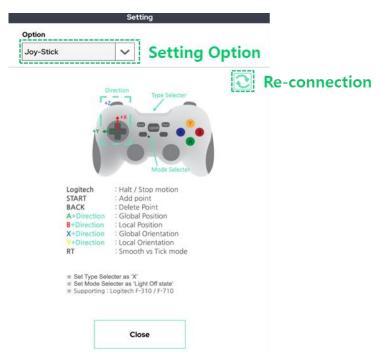
This window allows you to test the output of the tool flange.

[Utility-I/O Extension Board]

							Ut	ility							
Opti	on									Su	ub Opt	ion			
/0	Exten	sion	Board				\sim			V	/O Sigi	nal Vi	iew		\sim
	Ext	ensio	on Boa	ard D	igital	Input	t	Extension Board Digital Output							ıt
0	-	4	-	8	_	12	-	o	-	4	-	8	-	12	_
1	-	5	-	9	-	13	-	1	-	5	-	9	-	13	-
2	-	6	-	10	-	14	-	2	-	6	-	10	-	14	-
3	-	7	-	11	-	15	-	3	-	7	-	11	-	15	-
Extension Board Analog Input Extension Board Analog Output															
0	D		1		2		3		o		1		2		3
C)		0		0		0		0		0		0		0
										_					
										_					

I/O expansion module's I/O signal monitoring window.

Window for testing the output of the I/O expansion module.


Setting sub functions

[Setting-Tool List Select]

	~	C. 111
Tool List Select	~	Setting Option
ist		
Default TCP	\sim	
Default TCP		
1:		Tool Selection
2:		Tool Selection
3:		
4:		
5:		

There is a Tool List Select setup feature that sets up TCP to use in a pre-saved TCP list.

[Setting-Joystick]

The Joystick setting allows the user to control the robot using a joystick connection.

[Setting-User Coordinate]

				Se	tting								
Opt	tion				_								
Us	er Coorc	linate		\sim	Set	tin	ig Opti	ion					
Co	ordinate	90		~	Use	er (Coord.	#					
Cur	rent Sett	tings							1				
	0	ffset (mr	n)			Orie	ntation (°)			~			
x	١	(z		Rx	Ry	Rz			Curi	rent	: Setti	ng
0.0	0	0.00	0.00)	0.00	0.	00.00						
_	nge Sett	ings		~	Activate								
	x	Y	z										
P1	0.00	0.00	0.0	0	Get		3poir	+-	~	.++i#			
P2	0.00	0.00	0.0	0	Get		spon	its	50	ettii	ig .		
P3	0.00	0.00	0.0	0	Get								
	Chan	ge Coord	inate l	nfo									
						_							
				с	lose								

Allows the user to set their own coordinate system using the 3-point setting mode. For more explanation, see the Coordinate page on the Setup Screen.

[Setting-User Coordinate Center]

		Se	tting
ion			_
er Coord	Center	~	Setting Option
ordinate	0	\sim	User Coord. #
ent Setti	ngs		
Of	fset (mn	n)	Orientation (°)
Y		z	Rx Ry Rz Current Setting
0 0	0.00	0.00	0.00 0.00
x	Y	Z	Center point set
~	~		
0.00	0.00	0.00	Get Center point set
	Ŷ		
Chang	ge Coord	inate Info	
			ose
	er Coord. ordinate ent Setti 9 0 C nge Setti X 0.00	er Coord. Center ordinate 0 rent Settings Offset (mn Y 0 0.00 0.00 x y 0.00 0.00 0.00	lon er Coord. Center

- Offset (mm) Change the X, Y, and Z of the user-defined coordinate system by providing an offset for the robot. Maintains the rotation of the coordinate system.
- Orientation (°) Change the orientation of the user-defined coordinate system. Maintains the X, Y, and Z of the coordinate system.

[Setting-Auto TCP]

	Set	tting		
Option				
Auto TCP	~	Setting	Option	
Current Settings				
Offset (n	nm)	Orientat	ion (°)	Current
х ү	z	Rx Ry	Rz	
0.00 0.00	0.00	0.00 0.00	0.00	Tool information
Change TCP :		Activate		
P1 Get ↓				
P2 Get		Posture		
P3 Get	to	o maintai	n TCP	
\downarrow				
P4 Get				
·				
Change TC	P Info			
	CI	ose		

This function allows the user to find the position of the TCP automatically.

[Setting-External F/T]

		s	etting			
Option						
External	F/T	~	Sett	ing C	ption	
Current S	ignal			2	0)	
Fx(N)	Fy(N)	Fz(N)	Mx(Nm)	My(Nm)	Mz(Nm)	Current sensor
0.00	0.00	0.00	0.00	0.00	0.00	values
Calibratio	'n		Activate	•		_
c	Calibration S	Start	1			
	\downarrow		1			
X	Axis Calibra	ation]			
	\downarrow		Sen	sor		
Y	-Axis Calibra	ation		brati	o n	
-	↓ • • • • • • • • •	- 41		bratio	511	
Z	-Axis Calibra	ation	1			
	Calibration I	End	1			

This window allows you to check and calibrate the external F/T sensor (e.g. Robotiq F/T sensor).

[Setting-Auto COG / Mass]

		Setting			
Option Auto COG/Mass		~ S	Setting	Optio	n
Current Settings					
Mass (kg) Cx(mm) 0.000 0.000	Cy		(mm) 00	Current	setting
Calibration		Act	tivate 🔵	Teach,	
Sensor					
Internal		\sim			
Mounting		Option			
Case 1	\sim	Mass+COG	9	\sim	
Pose 1 Save]			Auto Mass/COG
4		,			searching
Pose 2 Save					scarching
4					
Pose 3 Save			Auto C	alculation	
4		7		6 . 11	
Pose 4 Save			Save	Setting	
		Close			

This function finds the weight and center of gravity attached to the tool using the internal / external F/T sensor.

[Setting-Motion Recording]

Option	
	ting Option
ToStart Run ToEnd	Loading Recorded
Record New File Rate Name 0 (0~50Hz)	
Record Start	Saving New Motion
Record Stop	i i
¥	
Record Save	

It is a function that records the motion through the direct-teaching(gravity compensation) function. The recorded action is available in the program via the Replay function.

[Setting-I/O Logging]

This function sets one digital input/output, records the change in the value of that input/output, and shows it graphically.

[Setting-Welder Wire Control]

tion elder Wire Control 🛛 🗸	Setting Option
elder Wire Control 🗸 🗸	Setting Option
	Setting Option
Wire Inching	
	Wire Control
Wire Back	
Cl	ose

This function can control the welding machine's wire.

[Setting-TCP Orientation Change]

Set	tting	
Option		
TCP Orientation Change 🗸	Setting Option	
Current Settings		
Position (mm)	Orientation (°)	Current Setting
X Y Z	Rx Ry Rz 0.00 0.00 0.00	current setting
		_
TCP Orientation configuration	Activate	
* Set the rotation direction of t	the default	
TCP coordinate system based on the current robot pos	sture	
to match the selected coordina	ate system.	Change TCP Orientation
Alignment Frame Selection		
	~	
Change TCP Orientation Info		
i	i	
		1
	ose	

Sets the rotation direction of the default TCP coordinate system based on the current robot pose to match the selected coordinate system.

[Setting-User Coordinate Auto]

Setting							
Option							
User Co	oordinate A	uto 🗸	🖡 Setti	ng Op	tion		
			4				
Coordir	nate O	~	T			1	
L						11	
Current	-						Current Settings
	Offset (n			Orientation (°)			Settings
X	Y	Z	Rx	Ry	Rz	1	
0.00	0.00	0.00	0.00	0.00	0.00		
Change S	Settings	====	Activate	۲			
Change S	Settings	====	Activate	۲		I I I I Change	User Coordinat
		rdinate system				Change	User Coordinat
	ige the cool	rdinate system	n setting to th			Change	User Coordinat
	ige the cool		n setting to th			Change	User Coordinat
	ige the cool		n setting to th			Change	User Coordinat
	ige the cool		n setting to th			Change	User Coordinat
	ige the cool		n setting to th			Change	User Coordinat
	ige the cool		n setting to th			Change	User Coordinat
	ige the cool		n setting to th			Change	user Coordinat
	ige the cool		n setting to th			Change	User Coordinat
	ige the cool	rrent TCP fran	n setting to th			Change	User Coordinat

Change the coordinate system setting to the current TCP frame.

Monitor Function

This function is used in conjunction with the Monitor command in Section 6. This window allows the user to observe the system and user variables in real time.

By pressing the recording function on the upper right, the TCP trace of the robot tool is recorded in the 3D viewer in the 3D viewer. (Yellow solid line)

■ 3D View Function

×	¥	z	Base	Shoulder	Elbow		
0.00	0.00	0.00	0.00°	0.00°	0.00°	Mode	
RX	RY	RZ	Wrist 1	Wrist 2	Wrist 3		Smoo
0.00	0.00	0.00	0.00°	_0.00°	0.00°	Dist (mm)	Ori
TCP:	Default	тср 🗊	60	000		50	5
		antes Sector					x
						+	0.0
		<u> </u>	1				Ŷ
		1	2			+	0.0
							z
 						+	0.0
1							R
		T				+	0.0
						10 - 10 10 - 10	R
						+	0.0
1	1	1	- y			1	R

Allows users to change the perspective of the 3D viewer.

CHAPTER 8. ROBOT OPERATION

8.1 ROBOT OPERATION

The 'Play' screen allows the user to use program files to move the robot in a continuous loop.

■ 'Play' screen is shown below.

default	A Control Box is not Connected	07-16 금금 15:19
legin + -		None
		🗇 🗇 C 🖵
	▶ Joint Angle	
	J0: 0.00° J1: 0.00° J2: 0.00° J3: 0.00° .	J4: 0.00° J5: 0.00°
		Ry: 0.00 Rz: 0.00
		T.In
	Out	T.Out
Operating Time 0000:00:00 Count 0/0 र्रि	🗱 Settings Payload: 0.00kg COM: (0.00,0.00,0.00	
Count 0/0 2	C TCP: (0.00,0.00,0.00) C	ollision: Off
Load Save Save As New		6

Before using, please check the connection between tablet PC and control box.

Check the **b** Icon to view the connection with the robot. Please refer to Chapter 6.2 for connection.

- Open the desired project. Please refer to Chapter 6.6 for more detail about how to open a project.
- Press the play (▷) button located at the bottom of the screen to run the robot.
- A dialog is pops up when the current robot position is different from the initial position specified. Press and hold the 'approach' button to move the robot to the initial position.
- In 'Play', the program loaded will repeat indefinitely if the 'number of repeat' is not specified. Press 'Count' at the top of the screen to set the 'number of repeat'.
- The motion speed of the robot can be adjusted while the robot is in operation.

Warning:

- 1) The risk assessment of the robot must be done, and all safety requirements must be satisfied before the robot operation.
- 2) The initialization of the robot may fail when the robot is not properly installed, the payload is not set accurately, or an issue occurs in the initialization process.
- 3) In 'Play', the robot physically moves immediately when the 'Play' button is clicked. Please read carefully all sections related to the robot operation.
- 4) To move to the 'Make' or 'Setup' screen, the program running must be terminated.
- 5) The USB cable between Tablet PC and control box can be unplugged during the robot operation.

8.2 ROBOT STATUS CHECK

The robot's current status is shown in the 'Play' screen during operation.

schmalz_demo	Simulation Real Robot 7-20
Begin + 1	None
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J0: 90.00° J1: 0.00° J2: 90.00° J3: -90.00° J4: 0.00° J5: 0.00° ↓ TCP Posture
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	X: 205.50 Y: 392.69 Z: 706.25 Rx: -0.01 Ry: 0.00 Rz: 90.00 ➡ Digital I/O In Out
Operating Time 0000:00:00 Count 1/ ∞ ζ	TCP: (0.00,0.00) Collision: Off
Load Save Save As New	

	Description
1	Program flow tree
2	3D viewer
3	3D view angle changer
4	System information, system variable monitor
5	Play / Pause / Stop / Velocity slide bar

8.3 TROUBLESHOOTING WHILE OPERATING

Various problems can occur while the robot is in operation. Below are some of those problems and ways to troubleshoot.

1. External Collision

X	Alarm : External collision w	vas detected.		
	Solve : To continue motio To exit from motio		ap' the robot twice by ha	ands.
	Note : Check 'payload' pa Check robot's grav	rameter as it should b vitational direction as i		resolved.
		Resume	Halt	

The robot will stop immediately when a collision is detected.

In order to resolve, please remove the object that collided with the robot. Press 'Resume' to resume the current program or 'Halt' to terminate.

TOK TOK (Tap to Resume)
Tap the robot twice to resume the previous task.

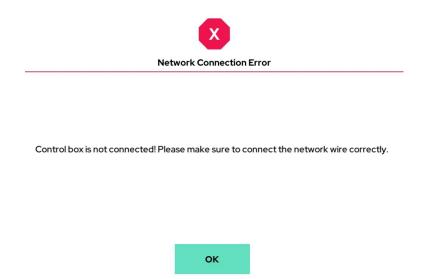
2. Self Collision

The robot automatically stops when it approaches a configuration where it will run into itself.

To recover from this situation, press the 'Teaching Button' at the tool flange and manually change the current pose of the robot. Then, please edit the command in the current program that caused the self-collision.

When the situation occurs in 'Simulation' mode on the 'Make' screen, any of the following instructions will recover the robot.

- Use any button on the 'Make' screen related to robot motion.
- Change 'Simulation' mode to 'Real' mode to get the current joint data of the robot.
- Use the 'Teaching Button' to get the current joint data of the robot.


3. Alarm Message

	Alarm : hello world		
this is alarm test			
Resume	[Halt	

When an 'Alarm' is set in the current program, the robot will pause once the 'Alarm' command is reached. A dialog will then pop up.

Press 'Resume' to continue the task or 'Halt' to stop.

4. Teaching Pendant (Tablet) Disconnection

This message will occur when the Tablet PC is physically disconnected from the control box.

To recover, please plug the Tablet PC's USB cable to the control box.

If the Tablet PC's USB cable is plugged into both the Tablet PC and the control box, it may be damaged. Please replace the cable with new one.

Error
Power Down Detected. Re-initialize the robot!

This error will appear when the robot is not receiving enough power. It may appear when the Emergency Stop button is pressed. If the button is not pressed, however, the AC or DC power line may be damaged.

The robot should be rebooted and re-initialized to resolve this issue.

5. Power Down of Robot ARM

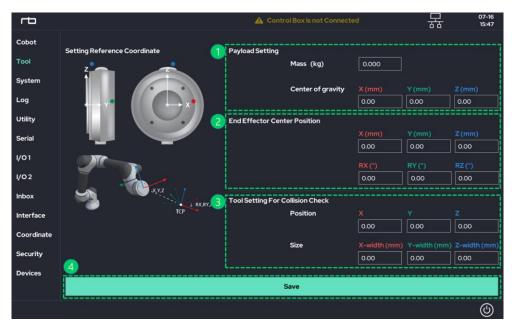
6. Joint Controller Errors

The robot will stop automatically when one of its joint controllers experiences one of the following errors:

Big Error	The difference between the reference input and encoder value exceeds the factory-specified threshold.
Jam Error	The encoder value does not change, but a current is supplied that is over the factory-specified threshold.
Overcurrent Error	The current exceeds the maximum current threshold.
Temperature Error	The temperature exceeds the maximum temperature threshold.
Mode Error	The version of software in the main controller is different from the version in the joint controller.

CHAPTER 9. SETUP

9.1 SET-UP(COBOT)


Sets the default settings for the robot arm.

	Collision sensitivity. When it is enabled, the collision sensitivity can be adjusted. The robot stops with a smaller impact if the collision sensitivity is lower.
2	Workspace boundary. The robot will stop when it crosses the boundary of workspace.
3	Displays the UI robot model currently in operation and the robot model of the connected control box.
4	Select the stop mode after the collision detection.
(5)	Robot's installation angle. If there is a corresponding installation angle among the examples shown, click on the picture. To input directly, enter the direction vector of gravity based on the global coordinate system
6	Save current settings.

9.2 SET-UP(TOOL)

Sets the installed tools.

٢	To prevent self-collision while moving, a virtual box-type boundary at the tool flange can be created. Define a size of the box and location of the center in respect to the tool's coordinate system.	
2	Payload setup. Mass in kg up to * kg (depending on robot model) and center of gravity in mm should be defined.	
3	Define the relative TCP position and orientation in respect to the coordinate system of the tool flange.	
4	Save current settings	

9.3 SET-UP(SYSTEM)

Set the display unit, date and time, UI password, system update, and more.

Ъ		A	Con	trol Box is not Connected		뫎		07-16 15:52
Cobot 🚺	Time Format	24hour	~	Software Update			Activate	6
Tool	L		_	L				
System 2	Language	English	~					7
Log				Default Work				
Utility 3	Command Icon Language	English	~ I		default		Initializa	ation
Serial 4	Network			L				
I/O1	IP	0.0.0.0						
1/02	Netmask	0.0.0.0						
Inbox	Gateway	0.0.0.0						
Interface	·							
Coordinate	Robot Auto Initialization	Activate						
Security								
Devices 8								
				Save				
								(1)

1	Date and time format
2	Log-in password setup.
3	Network address setup. This address is used to communicate to other devices.
4	Language setup
(5)	Auto initialization setup. When this function is enabled, the robot initializes itself to be ready to move in 'Real-Mode'. To use this feature, the 'Auto-Initialization Key' in the digital I/O needs to be defined. When 'Auto-Initialization Key' is activated, the robot will initialize itself.
6	When enabled, will update software. Please refer to appendix (software update) for more details.
\overline{O}	This Function can be used with 'Auto-Initialization'. After the robot initializes itself, the program specified in this Function will run automatically.
8	Save current settings

9.4 Set-up(Log)

Check the system log status of the robot arm.

1	Copy a log file from the control box to the Tablet PC. Depending on the size of file, it may take few seconds.
2	Opens the log file copied.
3	Displays an internal log based on the following characters: I : Information W : Warning E : Error S : System F : Fatal
٩	This function checks the status of the robot arm.
5	Back up program files / log files / setup files stored in the Control Box to your tablet PC. The copied (back-up) files are stored in a specific path on your tablet PC.

9.5 Set-up(Utility)

Provides functionality for packaging and emergency recovery of robots.

гъ	🛕 Control Box is not Conne	ected	묾	07-16 16:01
Cobot	Packing Pose			
Tool		Pa	king	
System	When the button is pressed, the robot moves in the posture for packing. Activate the robot before this process.	Pa	-king	
Log				
Utility 2	Joint Maintenance/Recovery		Activate	
Serial	Joint Maintenance/Recovery function will be perfomed in the follwing 3 steps.			
I/O1	1. Select the problematic joint. - Select the joint you want to recover	0 1	2 3 4	5
1/02		Normal	Recovery Re	quired
Inbox	2. Release the brake of corresponding joint. - When the brake is released, the robot can fall freely.		Releas	se
Interface	- Hold the robot and press the corresponding button.	P (
Coordinate	3. Reset the joint. - Move the joint freely, align it as close as	d	Rese	t
Security	possible to the alignment line, then press reset.	Ϋ́́		
Devices	Control-Box should be RESTART after joint initialization	n process **		
				(
				~

1	A button pre-defined for packing pose. When a user presses and holds this button, the robot moves to the packing pose. This is the pose that the robot is originally shipped in.
2	This function is used to reset a joint encoder back to its initial value. This function is intended to recover the robot from abnormal operation and should be used with caution. Step1. Select a joint to be reset. Step2. Press the 'Release' button to have the joint move freely. Step3. Align the marks at the joint. Press 'Reset' to re-initialize the joint.

Warning:

- 1) Before using the 'Emergency Joint Recovery', please fully understand all related usages of the robot.
- 2) If shipping the robot, it should be packed within its original box.

9.6 SET-UP(SERIAL)

Sets serial communication between the robot tool and the control box.

гъ		▲ Co	ntrol Box is not Co	onnected		07-16 16:03
Cobot	Tool		Box			1
Tool						
System	Baud Rate	0		Baud Rate	0	
Log	Parity bit	None 🗸		Parity bit	None	~
Utility	Stop bit	1 ~		Stop bit	1	~
Serial						
I/O1						
I/O 2						
Inbox						
Interface						
Coordinate						
Security						
Devices						
2			Save			
						٩

1	Settings for Serial (RS485) communication(Baud Rate, Stop bit, Parity bit).
2	Save current settings

9.7 Set-up(I/O 1)

Sets the function of the GPIO port on the control box.

гъ	1	3	▲ Control Box is not Connected	다. 12-04 금급 16:30
	Control Box Digital In Function	Control Box Digital Cut Fur	nction Control Box Input Label	
System	Din O Default	Din 1 Default	2 Selected Din Port Num :	
Log	Din 2 Default	Din 3 Default	Desired Function	Set 3
Utility Serial	Din 4 Default	Din 5 Default	R : Rising Edge , F : Falling Edge	Set
J/01	Din 6 Default	Din 7 Default		
I/O 2	Din 8 Default	Din 9 Default		
Inbox	Din 10 Default	Din 11 Default		
Interface Coordinate	Din 12 Default	Din 13 Default		H: High State
Security	Din 14 Default	Din 15 Default	1 R: Rising Edge	F: Falling Edge
Devices				
Tool List				
				٨

1)	Select an input port to be changed.
2	Specify the type of the input port.
3	Save changes.

гь		4	▲ Control Box is not Connected	口 12-04 古古 16:30
Cobot Tool	Control Box Digital In Function	Control Box Digital Out Fund	ction Control Box Input Label	
System	Dout 0 Default	Dout1 Default	5 Selected Dout Port Num :	
Log	Dout 2 Default	Dout 3 Default	Desired Function Default	✓ Set
Utility Serial	Dout 4 Default	Dout 5 Default	H : High State , L : Low State	
I/O1	Dout 6 Default	Dout 7 Default		
I/O 2 Inbox	Dout 8 Default	Dout 9 Default		
Interface	Dout 10 Default	Dout 11 Default		
Coordinate	Dout 12 Default	Dout 13 Default	1 R: Rising Edg	H: High State
Security Devices	Dout 14 Default	Dout 15 Default		L: Low State
Tool List				
				٢

4	Select an output port to be changed.	
5	Specify the type of the output port.	
6	Save changes.	

гъ			🛦 Contro	I Box is not Connected	뮮	12-04 16:31
Cobot	Control Box Digital In Function	Control Box Digital Ou	It Function Con	trol Box Input Label		
Tool System	Din O	Din 1	8	Selected Din Port Num :	 ļ	
Log	Din 2	Din 3		Name	 Set	9
Utility Serial	Din 4	Din 5			 	
I/O1	Din 6	Din 7				
I/O 2 Inbox	Din 8	Din 9				
Interface	Din 10	Din 11				
Coordinate	Din 12	Din 13				
Security Devices	Din 14	Din 15				
Tool List						
						٢

7	Select the input port to be named.	
8	Type the name you want to use.	
9	Save as selected name.	

rb		4	Control Box is not Connected	08-23
Cobot	Control Box Digital In Function Definition	Control Box Digital Out Func Definition	tion Control Box Input Label	Control Box Output Label
System	Dout 0	Dout 1	Selected Dout Port Num :]
Log Utility	Dout 2	Dout 3	Name	Set
Serial	Dout 4	Dout 5		
1/01	Dout 6	Dout 7		
I/O 2 Inbox	Dout 8	Dout 9		
Interface	Dout 10	Dout 11		
Coordinate	Dout 12	Dout 13		
Security Devices	Dout 14	Dout 15		
Tool List				
Program Table	e			
				\bigcirc

10	Select the output port to be named.
1	Type the name you want to use.
12	Save as selected name.

Description of all types available for the input port.

The input ports from Din0 to Din 15 in the control box can be set up as one of the following types. (R = Rising Edge, F = Falling Edge, H = High State).

- 0. Default (GPIO)
- 1. Run Program Once (Rising Edge)
- 2. Stop/Halt Program (Rising Edge)
- 3. Pause Program (Rising Edge)
- 4. R = On direct-teaching / F = Off direct-teaching
- 5. R = speed 100% / F = speed 0%
- 6. R = Convert to REAL mode / F = Convert to SIMULATION mode
- 7. R = Robot arm initialization (activate servo drive)
- 8. H = Collision detection off
- 9. H = Auto-Initialization Key
- 10. R = Resume the operation from pause state caused by external collision
- 11. Add Point in UI (Rising Edge)
- 12. Run Program Repeat (Rising Edge)
- 13. R=goto Begin posture / F=stop moving
- 14. R = Program Resume
- 15. H = Quick Freedrive Change
- 16. R = Pause / F = Resume Program
- 17. F = Pause / R = Resume Program
- 18. H = Speed 100% / L = 0%
- 19. R = Load Default Program
- 20. F = Robot Arm PowerDown
- 21. R = Touch Sensing
- 22. F = Touch Sensing
- 23. H = No Arc
- 24. H = Program Start Block
- 25.R = Ext.Joint0 Plus/F=stop

- 26.R = Ext.Joint0 Minus/F=stop
- 27.R = Ext.Joint1 Plus/F=stop
- 28.R = Ext.Joint1 Minus/F=stop
- 29.R = Ext.Joint2 Plus/F=stop
- 30.R = Ext.Joint2 Minus/F=stop
- 31.H = Safety Speed
- 32.F = UserCoord0 ←TCP frame
- $33.F = UserCoord1 \leftarrow TCP frame$
- $34.F = UserCoord2 \leftarrow TCP frame$
- 35.F = Load & Run Program Table

Warning:

1) Before using digital input, please fully understand electrical characteristics and all related manuals about digital input port.

Description of all types available for the output port.

The output ports from Dout 0 to Dout 15 in the control box can be set up as one of the following types. (R = Rising Edge, F = Falling Edge, H = High State).

All ports specified as one of types except for 'Default (0)' mode cannot be used in 'Teaching'

- 0. Default (GPIO)
- 1. H = Program/Robot is running / L = Idle
- 2. L = Program/Robot is running / H = Idle
- 3. H = External collision is detected
- 4. H = Direct teaching is running
- 5. Bypass the Digital input signal (same number Din port)
- 6. Bypass Tool Flange input 0
- 7. Bypass Tool Flange input 1
- 8. H = Robot's arm is in active status (servo on) / L = non-active
- 9. H = Real mode status / L = Simulation mode status
- 10. H = Robot is moving / L = Idle
- 11. L = Robot is moving / H = Idle
- 12. H = Robot activation (Servo-on) fail
- 13. H = Arm electric power is On / L = Power is Off
- 14. H = Collision detection is running / L = not-running
- 15. H = Pause state
- 16. H = Trap status in Inbox 0
- 17. H = Trap status in Inbox 1
- 18. PWM module
- 19. H = Teaching Pendant is connected
- 20. H = Program is running by MAKE page
- 21. H = Program is running by PLAY page
- 22. H = Is Conveyor mode
- 23. H = Control Box Boot

- 24. H = Force Control mode
- 25. PC Alive Pulse
- 26. H = Speed Bar 100%
- 27. H = Last Program Load Success
- 28.H = TCP is in InBox 0
- 29. H = TCP is in InBox 1
- 30. H = Is Alarm
- 31. H = Robot posture is Begin posture
- 32. H = Emergency Teaching Enable
- 33. H = Prog. Run in Sub.P area

Warning:

1) Before using digital output, please fully understand electrical characteristics and all related manuals about digital output port.

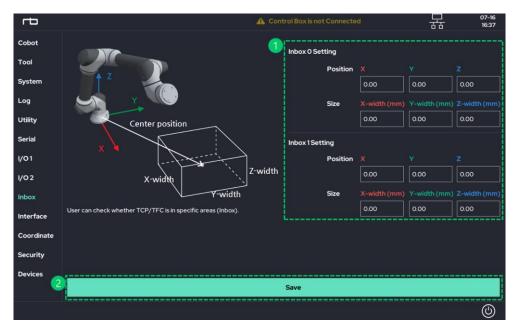
9.8 Set-up(I/O 2)

Set I / O value to always perform before / after program operation.

гъ		🛦 Control Bo	x is not Connected	口 07-16 古古 16:22
Cobot 👩				
Tool	Pre Program I/O	Post Program I/O	Boot-up Output	
System	Control Box Side D. out	Con	trol Box Side A. out	
Log	0 — 4 — 8	— 12 <u> </u> 0		3
Utility	1 - 5 - 9	— 13 — —		
Serial	. — . — .		I Flange Side Voltage / D. out	
I/O1	2 — 6 — 10	— 14 — Вур	pass 🗸 0 -	- 1 -
1/02				
Inbox	3 🗕 7 🗕 11	- 15 -		
Interface)
Coordinate				
Security				
Devices	🕳 Bypass 💻 Low	High Reset		
2		Save		
				٢

1	Set I / O transmission to be executed before program start. Ports set here will send output to the corresponding settings as soon as the program starts.
2	Save current settings

гь	_							•	Control Box is not Connected 07-16 16:23
Cobot	Dro D	rogram I/(2		3	Post Progra	am 1/0		Boot-up Output
Tool					2	rostriogn	ann y O		
System	Contr	ol Box Sid	e D. ou	t					Control Box Side A. out
Log	0		4		8		12		
Utility	1		5		9		13		
Serial									Tool Flange Side Voltage / D. out
i /01	2		6		10		14		Bypass 💙 0 🗕 1 🗕
1/02									
Inbox	3		7		11		15		
Interface									
Coordinate									
Security		-							
Devices		Bypass		Low		High	, R	eset	
4	L								Save
									٢


3	Set I / O sending to be executed after program end. Ports set here send output to the set value at the end of the program.
4	Save current settings

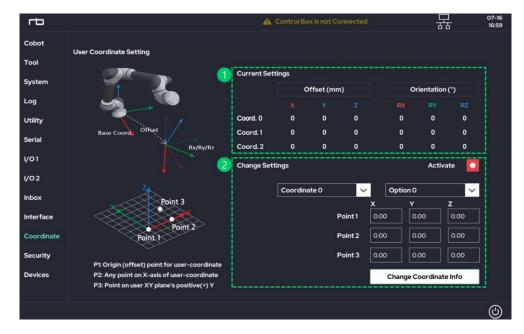
ъ				4	Control Bo	x is not Connected		뮮	07-16 16:27
Cobot	Pre Program I/O		Post Progr	ram I/O	5	Boot-up Output	7		
Tool	Control Box Side	Dout							
System	control box side	D.out							
Log	• —	4 🗕	8 —	12 —					
Utility		5 👝	9 🕳	13 🗕					
Serial									
I/O1	2 🗕	6 —	10	14 🗕					
1/02									
Inbox	3 💳	7 —	11 —	15 🗕					
Interface									
Coordinate									
Security	- Bypass	- Low	- High	Reset	1				
Devices									
6	4				Save				
									٩

5	After the control box boots for the first time, select the digital output option for the control box.
6	Save current settings

9.9 SET-UP(INBOX)

Sets the Inbox size and location information for using Inbox features

1)	Input panel to specify center of mass and size for Inboxes 0 and 1. The coordinate system matches the manufacture's (robot base) coordinate system.
2	Save changes


9.10 Set-up(Interface)

Perform the settings required for the user to operate the robot and UI.

ď			🛦 Cor	ntrol Box is not Connected	뮮	08-23 15:16
Cobot					- <u></u>	
тоо 1	Default Run Number in Play Page	0		Default Move Type	Move J	~ 7
System	Activate Saftey Slider	Activate		External F/T Sensor	None	~ 8
Log 2	When using this function the robot moves of the second state of th	ves only while pressing the		Direct Teaching Sensitivity	=======	
Utility	Jog Smooth Default Speed			Base		- 0.0
Serial 3	Speed		5%	Shoulder		0.0
1/01	Japaneed		<u> </u>	Elbow		- 0.0
1/02 4	Auto Orientation Alignment Buttor	n Activate		Eldow		
Inbox	Jog Tick Unit Setting			Wrist1		0.0
Interface	Joint Angle (°)	10		Wrist2		— 0.0
Coordinate	TCP Position (mm)	50		Wrist3		— 0.0
Security	TCP Orientaion (°)	5			- <u></u>	
			100	JogInterface-Play Button	No Play	V10
Devices 6	UI Speed Bar Limit L		100			
Tool List						
Program Table				Save		11
						\bigcirc

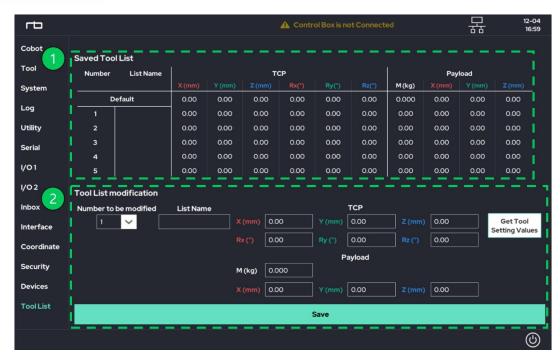
1	Number of times to repeat loop in 'Play' screen.
	Enable/Disable Safety slider in 'Make' screen.
2	When enabled, a user must hold the slider to keep the speed. Otherwise, the speed is back to zero. When disabled, the speed is maintained at the level that a user specifies.
3	Speed for the 'Smooth' option while using 'Jog'.
4	At the bottom of the jog on the Make screen, select whether or not to visualize the Auto Rotate Alignment function button.
5	Amount of movement per 'Tick' while using 'Jog'.
6	Limit the upper limit value of the speed bar on the UI
7	In the Make screen, select the action property to be created by default when creating Move.
8	Select the external-F/T sensor usage.
9	Joint sensitivity for direct-teaching.
10	When using a dedicated jog/emergency stop interface device provided by Rainbow Robotics, define the role of the play button on the device.
(1)	Save Changes

9.11 Set-up(Coordinate)

Contains information regarding user coordinate settings.

1)	The current user-coordinate information manually set. This coordinate is in respect to the manufacturer's base coordinate system.
2	Add/Edit user-coordinate system. The user-coordinate system is defined using the 3-point method.

9.12 SET-UP(DEVICES)


Set up additional equipment associated with the robot.

гъ			▲ Control Box is not Connected	뮮	12-04 17:11
Cobot	Weld Machine Setting	Gripper Setting			
Tool System	Using Welding Machine Settings				
Log					
Utility					
Serial					
I/O1					
1/02					
Inbox Interface					
Coordinate					
Security					
Devices					
Tool List			Save		
					٩

Proceed with the setup of the equipment connected to the robot.

9.13 Set-up(Tool List)

Set the Tool List.

1	Indicates the TCP value currently set.
2	Select the TCP number you want to modify. Set the name, TCP location, and center of gravity, and then save.

9.14 Set-up(Program Table)

Ъ	1	2	3		▲	Control Box is not Conne		5 08-23 15:56
Cobot	* Import Settings	\overline{c}	Option		77		15	!
Tool	·	0	Not Use	\sim	井		ï	Save
System		1	NotUse	\sim	臣		Н	Save
Log		2	Not Use	\sim	\mathbb{P}		H	Save
		3	Not Use	\sim	4		9	Save
Utility		4	Not Use	\sim	井		ü	Save
Serial		5	Not Use	\sim	1		H	Save
I/O1		6	Not Use	\sim	5		H	Save
1/02		7	Not Use	\sim	Ч		i I	Save
Inbox		8	Not Use	\sim	1		Н	Save
Interface		9	Not Use	\sim	11			Save
		10	Not Use	\sim	ij,		11	Save
Coordinate		11	Not Use	\sim	꾺		i i	Save
Security		12	Not Use	\sim	Ť		ii.	Save
Devices		13	Not Use	\sim	Ţ		H	Save
Tool List		14	Not Use	\sim	5		H	Save
Program Table		15	Not Use	\sim	i,		U	Save
							11.	٩

(])	Import previously created settings
2	Indicates which digital input port to use.
3	Select the function user want to use. The function is divided into Load, Load + Play(Once), and Load + Play(Repeat)
4	Select the project to use via digital input.
5	Save the settings.

The Start Program function used as the 'Control Box Digital In Function Definition' of the existing 'Setup > I/O1' can use only one digital input, and the program can run only main program currently uploaded to the control box. 'Setup > Program Table' can load different programs to different digital inputs. You can run additionally loaded programs.

 $\begin{array}{c} \textbf{Digital In \#} \longrightarrow \textbf{Main Program} & \longleftarrow \textbf{Sub Program} \\ SetUp > I/O1 \\ \hline \textbf{Digital In \#} \longrightarrow \textbf{Program set in} \\ \hline \textbf{Program Table} & \longleftarrow \textbf{I} \end{array}$

The picture below shows the difference between the two features.

Program set in

[Program Table]

Program set in

[Program Table]

Digital In #

Digital In #

CHAPTER 10. MAINTENANCE

10.1 CHECK LIST AND PERIOD

The robot requires regular maintenance to perform in the best condition. As such, a regular maintenance schedule is highly recommended. During maintenance, the following check list has to be done.

Check Item		Period		
	Robot	Check that the robot moves to the desired location properly.	D. 11	
		Check that the robot keeps its pose between being turned on and off.	— Daily	
Robot Arm		Remove stains, dust, and any contamination.	Every 3 months	
	Motor	Check if a joint becomes irregularly hot or noisy	Daily	
	Screws	Check that all screws on the body are tightened	Every 3 months	
Control Box	Cable	Check the connection of cables	Every	
Control Box	In-Box	Remove dust in the control box.	6 months	

Warning:

- 1) During maintenance, cut off the power to the system (Control Box and Robot Arm) and perform work.
- 2) For pneumatic/electric line passing models, remove the connected energy source (pneumatic/electric power) and perform the work.

10.2 ROBOT ARM MAINTENANCE

Maintenance Period

The robot arm requires an inspection at least per 1 year. Depending on the wear and tear, the maintenance period may differ.

- Maintenance Instruction
 - 1. Move the robot to the 'Home' position.
 - 2. Turn off the control box.
 - 3. Check the following list.
 - ① Robot-Control Box Cable: Is it cut or stabbed?
 - ② Screws: Are any loose?
 - ③ Mechanical Parts (Motor, Brake, Reduction Gear): Are any louder than normal?
 - 4. Remove stains, dust, and any other contamination.

10.3 CONTROL BOX MAINTENANCE

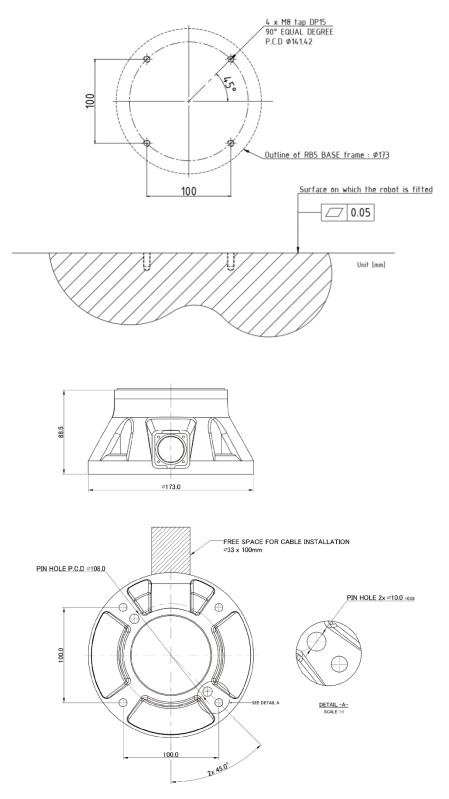
Dust in the control box may cause it to over-heat or generate electrostatic. These can potentially damage the control box. It is required to regularly clean up dust in the control box.

Maintenance Period

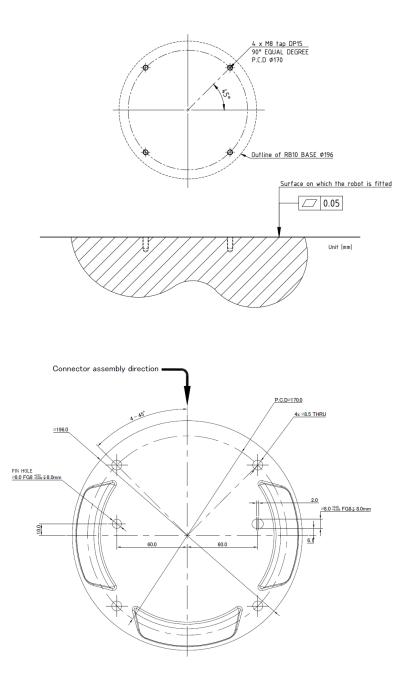
The control box requires an inspection and clean-up at least once per 6 months. Depending on the environmental condition around the robot, the period may differ.

- Maintenance Instructions
 - 1. Turn off the control box.
 - 2. Remove the cover of the control box.
 - 3. Remove dust in the control box with a vacuum cleaner.
 - 4. Check that all wires are connected properly.

Robot Arm

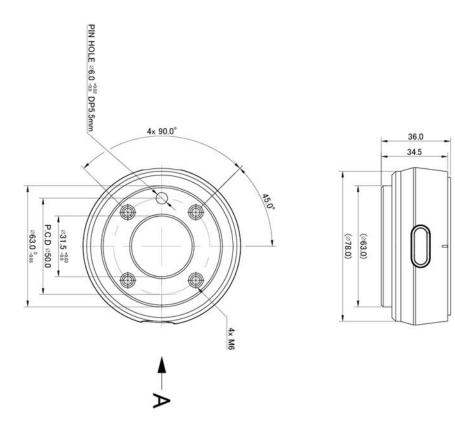

	Specification				
	RB5-850E Series: 5 kg / 11 lbs				
Payload	RB3-1200E Series: 3kg / 6.6 lbs				
	RB10-1300E Series: 10 kg / 22 lbs				
Weight	RB5-850E Series, RB3-1200E Series: 22 kg / 48.5 lbs				
weight	RB10-1300E Series: 33 kg / 72.8 lbs				
	RB5-850E Series: 850 mm / 33.5 in				
Arm Reach	RB3-1200E Series: 1200 mm / 47.2 in				
	RB10-1300E Series: 1300 mm / 51.1 in				
Degree of freedom	6 axis				
Joint Range	± 360°(Elbow: ± 165°)				
Joint Velocity	Joint: 180°/s, TCP: 1m/s				
Repeatability	±0.1 mm				
Foot print	RB5-850E/RB3-1200E Series: Φ173 mm				
	RB10-1300E Series: Ф196 mm				
Tool Flange Connector	M10 12-pin				
Tool Flange I/O	Non-E Version : Digital In 2, Digital Out 2, Analog In 2				
	E Version : Digital In 6, Digital Out 2				
Tool Flange Comm.	RS485				
Tool Flange Output Vol.	12V/24V, 2A				
IP Rate	IP66				
Temperature / Noise	0 ~ 50 °C / <65dB				
Material	Aluminum, Steel.				
Cable Longth	Power cable, RobotArm-ControlBox connection cable,				
Cable Length	Estop/Jog Interface cable : 5m				

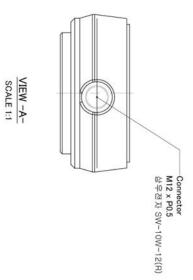
Stand-type Control Box

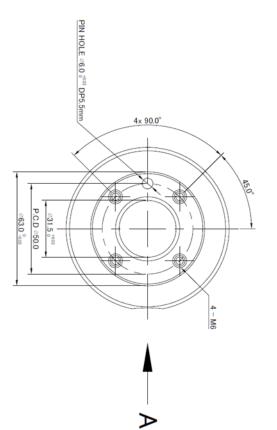

	Specification
Weight	CB04: 17.3 kg / 38.14 lbs
Size (W x H x D)	454 x 240 x 416.2 mm
I/O Ports	Digital Input 16 / Digital Output 16
	Analog Input 4 / Analog Output 4
Communication	Ethernet, TCP/IP
Power	100 ~ 240 VAC, 50 ~ 60 Hz
Material	EGI

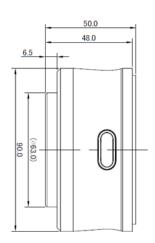
APPENDIX B. FOOT PRINT SCHEMATIC

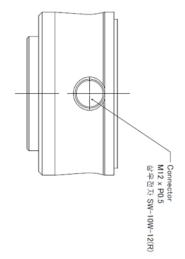
- RB5-850E / RB3-1200E Series Foot Print Schematic
 - ▶ P.C.D: Pitch Circle Diameter
 - ▶ DP: Depth

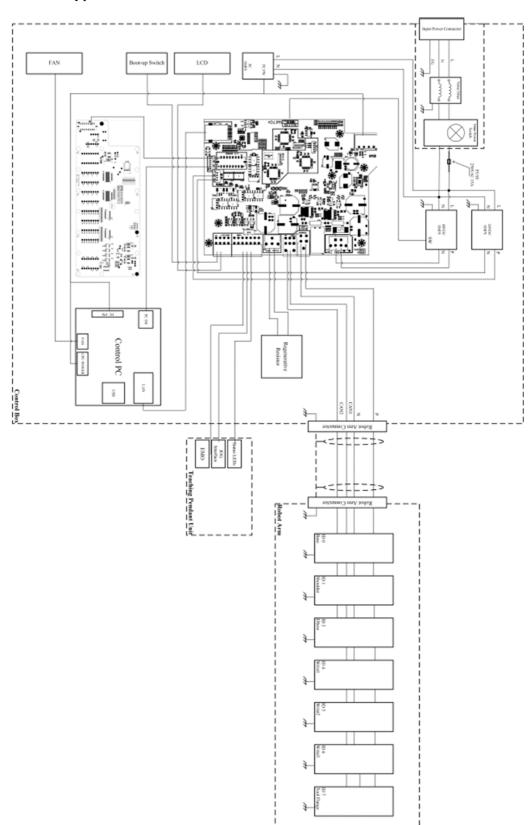



- RB10-1300E Series Foot Print Schematic
 - ▶ P.C.D: Pitch Circle Diameter
 - ▶ DP: Depth

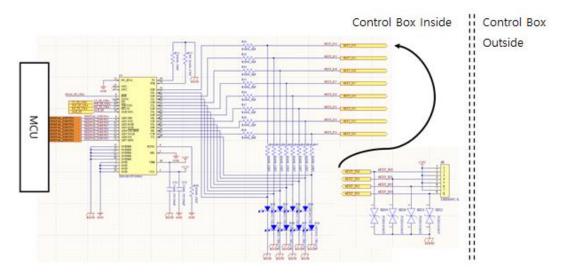

APPENDIX C. TOOL FLANGE SCHEMATIC


- RB5-850E / RB3-1200E Series Tool Flange Schematic
 - ▶ P.C.D: Pitch Circle Diameter
 - ▶ DP: Depth



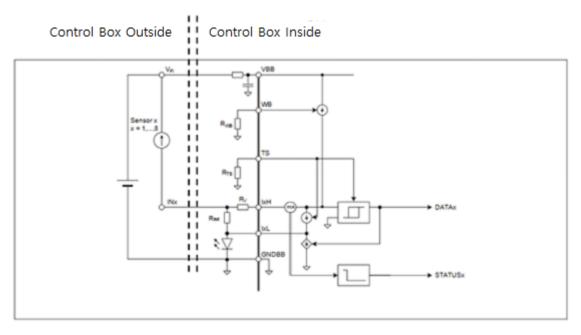

- RB10-1300E Series Tool Flange Schematic
 - ▶ P.C.D: Pitch Circle Diameter
 - ▶ DP: Depth.

APPENDIX D. CONTROL BOX ELECTRICAL SCHEMATIC

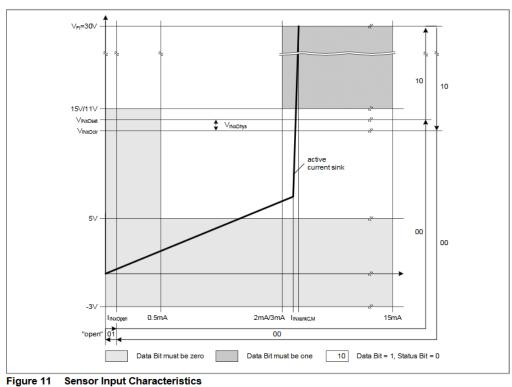

■ Stand-type Control Box(CB04) Electrical Schematic

APPENDIX D-1. CONTROL BOX DIGITAL INPUT

Warning


Before connecting Control Box Digital input port, the power should be cut off.

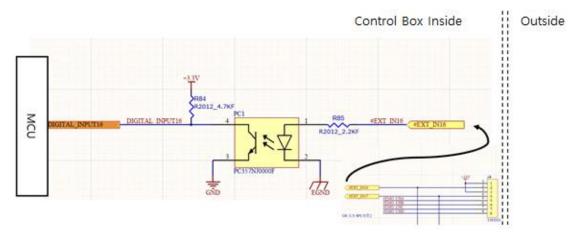
1. Internal Circuit Diagram of Digital Input [DI00 ~ DI15]


Device configuration that receives Control Box Digital input [DI00-DI15]. There is an internal 24V supply terminal. A malfunction will occur if an external 24V is supplied.

2. How to use digital input elements [DI00 \sim DI15]

How to use RB Control Box Digital input device [DI00-DI15].

Functional Description


Voltage / current characteristic curve of digital input signal.

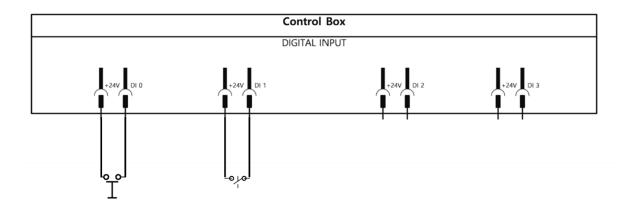
Terminals	Parameter	Min	Тур	Max	Unit
[DI00 – DI15]	Voltage	-3	-	30	V
[DI00 – DI15]	OFF region	-3	-	5	V
[DI00 – DI15]	ON region	11	-	30	V
[DI00 – DI15]	Current(11-30V)	2	-	15	mA
[DI00 – DI15]	Function	-	PNP+	-	Туре
[DI00 – DI15]	IEC 61131-2	-	1	-	Туре

3. Digital input characteristics [DI00 ~ DI15]

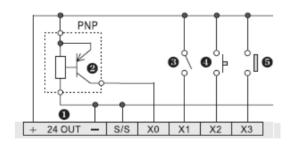
This specification applies only to digital input 0 to digital input 15.

4. Internal Circuit Diagram of Digital Input [DI16-DI17]

Device configuration that receives Control Box Digital input [DI16-DI17]. There is an internal 24V supply terminal. A malfunction occurs when an external 24V is supplied.


5. Digital input characteristics [DI16-DI17]

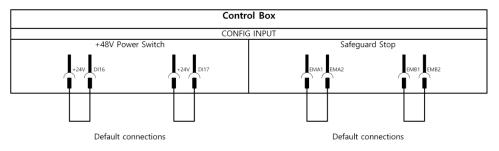
Terminals	Parameter	Min	Тур	Max	Unit
[DI16 – DI17]	Voltage	0	-	25	V
[DI16 – DI17]	OFF region	0	-	7	V
[DI16 – DI17]	ON region	7	-	25	V
[DI16 – DI17]	Function	-	PNP+	-	Туре


This applies only to digital inputs 16 and 17.

6. Testing environment

Digital input device test was conducted using Toggle switch, and the following configuration was tested.

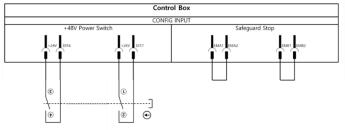
7. How to use PNP sensor

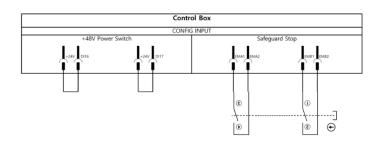


Ex source : https://blog.naver.com/mjg5080/97380010

PNP sensor can be used in the same way as above.

This is a specification that applies to all digital inputs.

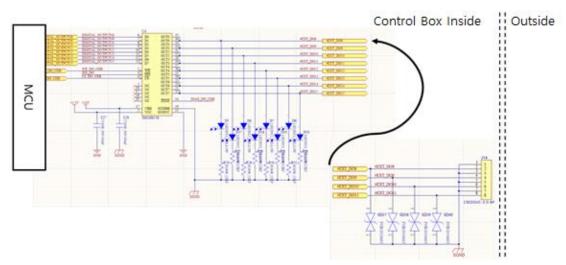

8. How to connect 3-Position Enabling Device



The initial factory condition is as above, and it is possible to install the operation.

 $Source: {\tt https://www.motionsolutions.com}$

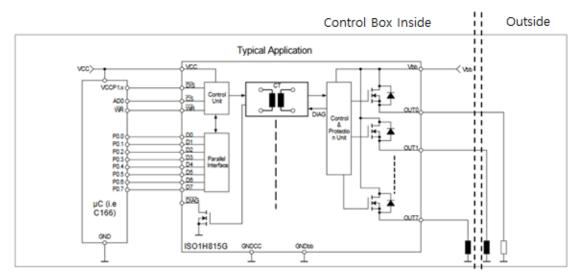
This applies to Enabling Device in accordance with ISO 10218, IEC 60204-1.

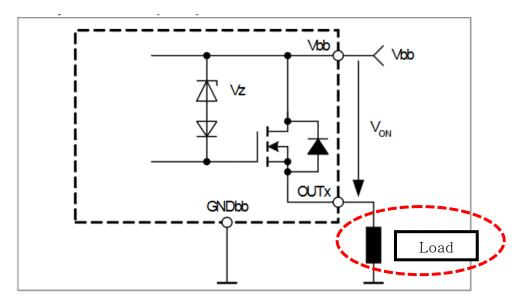

9. How to connect safety equipment

Safety device wiring using PNP type sensor and Enabling Device such as light curtain and safety door sensor is same as above.

APPENDIX D-2. CONTROL BOX DIGITAL OUTPUT

Warning


Before connecting the Control Box Digital output port, the power should be turned off.


1. Digital output internal circuit diagram [DO00-DO15]

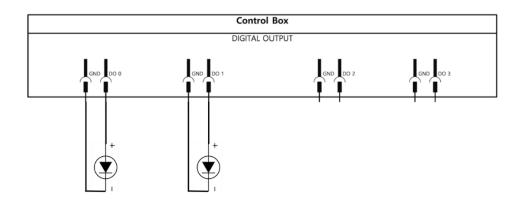
Device configuration that performs Control Box Digital output [DO00-DO15]. There is internal GND terminal, and it should be connected to GND of external sensor and equipment to be connected.

2. Digital output device usage [DO00-DO15]

How to use RB Control Box Digital Output Device [DO00-DO15].

How to use a single digital output.

Vbb power is supplied inside of the control box and its output is the source.

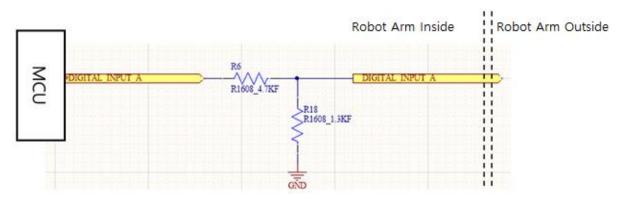

3. Digital output characteristics [DO00-DO15]

Terminals	Parameter	Min	Тур	Max	Unit
[DO00 – DO15]	Voltage	-	24	-	V
[DO00 – DO15]	CURRENT	0	-	1	А
[DO00 – DO15]	Function	-	PNP	-	Туре

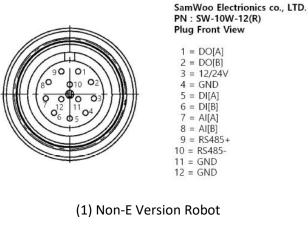
Single channel 1A is possible, but the total current of all channels must be less than 2A

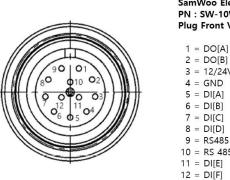
4. Test environment

Digital output device test was conducted using 24Vdc LED and the following configuration was tested.



Warning


> Before connecting RB Tool Flange I / O input port, the power should be cut off.


The electrical drawing below is for Non-E type only.

1. Digital input internal circuit diagram [DIA, DIB]

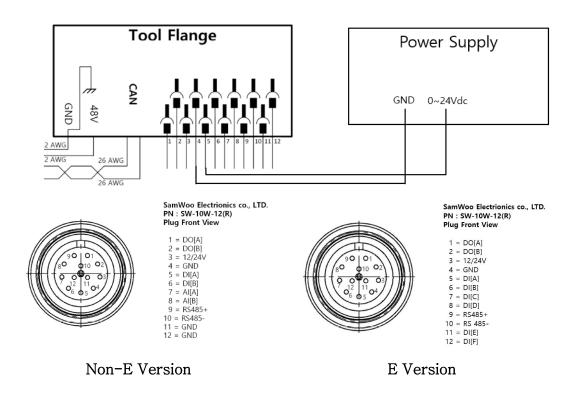
Device configuration for Tool Flange Digital input.

SamWoo Electrionics co., LTD. PN : SW-10W-12(R) **Plug Front View**

2 = DO[B]3 = 12/24V4 = GND5 = DI[A] 6 = DI[B]7 = DI[C]8 = DI[D] 9 = RS485 +10 = RS 485-

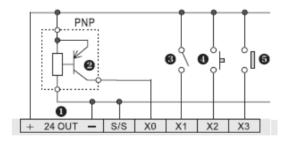
(2) E Version Robot

Exposed connector wiring diagram.


Terminals	Parameter	Min	Тур	Max	Unit
[DIA, , DIF]	Voltage	0	-	24	V
[DIA, , DIF]	OFF region	0	-	9	V
[DIA, , DIF]	ON region	10	-	24	V

2. Digital input characteristics [DIA, DIB]

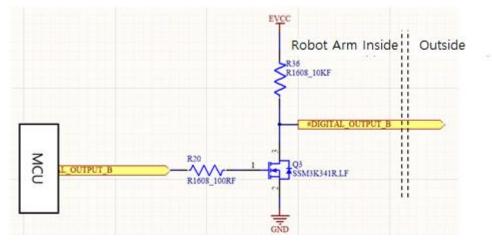
This is a specification that applies only to Tool Flange Digital input (At this time, only DIA and DIB for Non-E version Robot are applied.)


3. Test environment

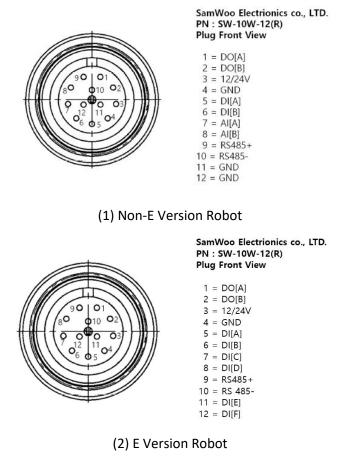
Digital input device test was conducted using power supply, and the following configuration was tested.

4. How to use PNP sensor

Ex source : https://blog.naver.com/mjg5080/97380010


PNP sensor can be used in the same way as the above connection.

This applies equally to the Control Box Digital input.


Warning

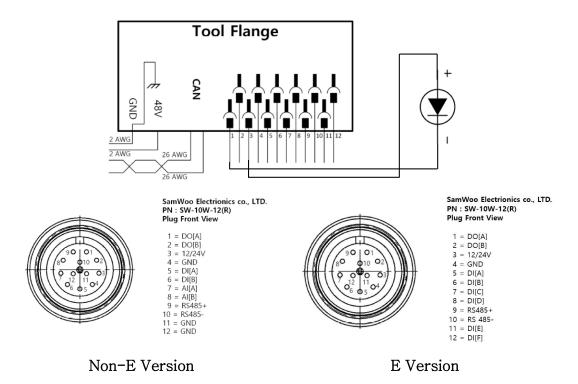
Before connecting the Tool Flange I / O output port, the power should be cut off.

- The electrical drawing below is for Non-E type only.
- 1. Digital output internal circuit diagram

Device composition for Tool Flange Digital output [DOA, DOB].

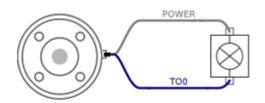
External connector wiring diagram.

Terminals	Parameter	Min	Тур	Max	Unit
[DOA, DOB]	Voltage	0	12/24	24	V
[DOA, DOB]	CURRENT Ver 1.	0	150	700*	mA
[DOA, DOB]	CURRENT Ver 2.	0	2000	2000	mA

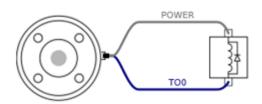

2. Digital output characteristics

*Tsp=25°C; pulsed; tp≤10µs

This specification applies only to Tool Flange Digital outputs A and B. As of July 24, 2019, version of RB5 shipped out is Ver 1.

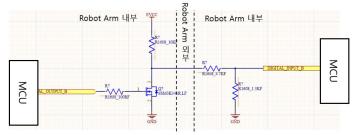

3. Test Environment

Digital output device test was conducted using 24V dc LED and the following configuration was tested.

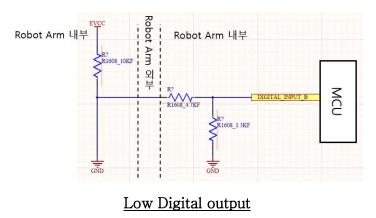


The following example is shown in this manual.

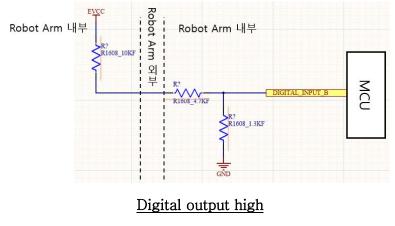
 The image shown below illustrates how to turn on/off a load with 12V or 24V. The voltage level can be specified in the Tool Out (TOO) block



※ It is strongly recommended to use a diode to protect the tool using an inductive load



4. Precautions when using


Digital output device is **NPN** type but has internal 10K pullup resistor. Most devices (LEDs, solenoid valves, relays) can be used in the test environment No. 3 or with the digital signal application function on commercial grippers. However, they may not work in the environment using the same voltage distribution as Rainbow Robotics' tool flange digital input devices.

When Rainbow Robotics' digital output is connected to the digital input

Digital input is output low with OV input.

Digital input may not be recognized depending on the resistance value.

For the diagram above, if the voltage applied to MCU is EVCC 24Vdc, about 2V is applied to it and is detected as Low.

If users MUST operate as above diagram, digital input stage resistance ratio adjustment is necessary.

E.0 Concept

The cooperative robot RB series can be operated for various environments and purposes. It can be used in conjunction with multiple RB series or other systems. In conjunction with the vision system, movement coordinates can be changed in real time, or used as part of a user's existing system.

Users can control the robot with teaching pendant (tablet UI), but it provides a way to control the robot from any external controller for user's convenience or operation.

The RB series receives script commands by default and executes those commands. The task of writing a motion using the teaching pendant (tablet UI) and executing the script of the file in order is a general operation method. The following method described in this document is an alternative method of receiving a command script from another external device to control a robot of the RB series.

The control syntax provided in the teaching pendant / tablet UI can be implemented by the user directly from the external control device, and the robot operation commands / IO control commands are sent according to the user's use case.

The following document describes an example of driving a robot with the above concepts.

E.1 External Control Script API

The description of the scripts provided in this document looks similar to the scripts in the ".wsl" work document, which is written using a tablet as a dedicated script for external control. Work documents contain statements that control flows such as "repeat", "if-else", and "break", so that the completion of a statement is not directly related to the action, and the parent sentence of that statement must be completed.

For example, suppose there are Point Functions in the Move command Function.

1) move joint { point () absolute 0.4, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 point () absolute 0.4, 0.1, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0

2)
move joint {
point () absolute 0.4, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
point () absolute 0.4, 0.1, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0

The difference between 1) and 2) is the presence or absence of "}" at the end. In both cases, the point statement is complete. However, unlike 1), 2) is a syntax that cannot operate because the move statement, which is the parent of point, is not completed, and the parser will wait for the statement to complete.

3)	
folder() {	
move joint {	
point () absolute 0.4, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	
point () absolute 0.4, 0.1, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0	
}	

In the same logic as above, the parser does not run because it waits for the folder statement to complete.

However, the above method is not suitable for external control method. The user expects the robot to operate by parsing the command the moment it sends it through external control. It does not send multiple commands and complete those lines of text like example 3).

So external control must be organized so that each command is sent separately as a string. External control does cannot access any features that control the flow. Commands such as "repeat", "if-else", "break" or "wait" in the work document will not be available externally and must be replaced by the same structure and logic within the external control.

The following commands are actual motion commands to move the robot. Each one contains an example string that matches how a user would control the robot from an external application.

There are five operation commands.

- 1) jointall
- 2) movetcp
- 3) movecircle
- 4) blend_jnt
- 5) blend_tcp

jointall

Command	Jointall	
Script	jointall spd, acc, joint1, joint2, joint3, joint4, joint5, joint6	
Descript.	This command moves joints in Joint Space.	
	The input values for joint1 to joint6 in the command denotes base, shoulder, elbow, wrist1, wrist2 and wrist3 accordingly. Each joint value represents the desired angle to go. The desired angle should be an absolute angle in degree.	
	The input values for spd and acc are used to define velocity and acceleration accordingly. The spd and acc should be a number between 0 and 1. Smaller number represents slower. When the input value is -1, the joint moves with the default value.	
	This command will be ignored if the previous command is not finished yet.	
Example	"jointall 0.4, 0.1, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0"	

movetcp

Command	Movetcp
Script	movetcp spd, acc, x, y, z, rx, ry, rz
Descript.	
	This command moves TCP in Cartesian Space.
	The input values for x, y, z are used to define the desired position to go. The values should be a number in mm.
	The input values for rx, ry, rz are used to define the desired orientation to go. It is represented as roll, pitch and yaw in Euler angle, accordingly. The values should be a number in degree.

	The input values for spd and acc are used to define velocity and acceleration accordingly. The spd and acc should be a number between 0 and 1. Smaller number represents slower. When the input value is -1, the joint moves with the default value. This command will be ignored if the previous command is not finished yet.
Example	"movetcp 0.4, 0.1, 100.0, 100.0, 300.0, 0.0, 90.0, 0.0"

movecircle

Command	movecircle(three points mode)
Script	movecircle threepoints orientation_option spd, acc, x1, y1, z1, rx1, ry1, rz1, x2, y2, z2, rx2, ry2, rz2
Descript.	This command generates the circular motion of TCP using three points.
	Three options determining the orientation of TCP in drawing a circle are available in orientation_option.
	With 'intended', TCP follows the input orientation for mid-point (rx1, ry1, rz1) and end-point (rx2, ry2, rz2).
	With 'constant', TCP keeps the current orientation during the circular motion. With 'radial', the orientation of TCP changes in a way of the tangent direction to the center of the circle.
	The input values for x1, y1, z1 are used to define the relative position of TCP at mid-point from the center of the circle. It is a number in mm.
	The input values for rx1, ry1, rz1 are used to define the relative orientation of TCP at mid-point in Euler angle in respect to the center of the circle. It is a number in degree.
	The input values for x2, y2, z2 are used to define the relative position of TCP at end-point from the center of the circle. It is a number in mm.
	The input values for rx1, ry1, rz1 are used to define the relative orientation of TCP at end-point in Euler angle in respect to the center of the circle. It is a number in degree.
	The input values for spd and acc are used to define velocity and acceleration accordingly. The spd and acc should be a number between 0 and 1. Smaller number represents slower. When the input value is -1, the joint moves with the default value.
	This command will be ignored if the previous command is not finished yet.
Example	"movecircle threepoints intended 0.4, 0.1, 100.0, 100.0, 300.0, 0.0, 90.0, 0.0, 200.0, 200.0, 200.0, 0.0, 90.0, 45.0" "movecircle threepoints constant 0.4, 0.1, 100.0, 100.0, 300.0, 0.0, 90.0, 0.0, 200.0,
	200.0, 0.0, 90.0, 45.0" "movecircle threepoints radial 0.4, 0.1, 100.0, 100.0, 300.0, 0.0, 90.0, 0.0, 200.0, 200.0, 200.0, 0.0, 90.0, 45.0"

Command	movecircle(axis mode)
Script	movecircle axis orientation_option spd, acc, rot_angle, cx, cy, cz, ax, ay, az
Descript.	This command generates the circular motion of TCP using axes of rotation defined.
	Three options determining the orientation of TCP in drawing a circle are available in orientation_option.
	With 'intended' or 'constant', TCP keeps the current orientation during the circular motion. With 'radial', the orientation of TCP changes in a way of the tangent direction to the center of the circle.
	The input values for cx, cy, cz are used to define the position of axes of rotation (the center position of the circle). It is a number in mm.
	The values for ax, ay, az are used to define the orientation of axes of rotation. It represents an unit vector.
	The input value for rot_angle is used to define the amount of angle to rotate. It is a number in degree.
	The input values for spd and acc are used to define velocity and acceleration accordingly. The spd and acc should be a number between 0 and 1. Smaller number represents slower. When the input value is -1, the joint moves with the default value.
	This command will be ignored if the previous command is not finished yet.
Example	"movecircle axis constant 0.4, 0.1, 180.0, 200.0, 200.0, 200.0, 1.0, 0.0, 0.0" "movecircle axis radial 0.4, 0.1, 180.0, 200.0, 200.0, 200.0, 1.0, 0.0, 0.0"

blend_jnt

Command	blend_jnt
Script	blend_jnt clear_pt
Descript.	This command delete all desired joint values previously defined in the joint blending sequence. This command should be used at the beginning of blend_jnt programming.
Example	"blend_jnt clear_pt"

Command	blend_jnt
Script	blend_jnt add_pt spd, acc, joint1, joint2, joint3, joint4, joint5, joint6
Descript.	
	This command adds a desired joint value to the joint blending sequence.
	The input values for joint1 to joint6 in the command denotes base, shoulder, elbow, wrist1, wrist2 and wrist3 accordingly. Each joint value represents the desired angle to go. The desired angle should be an absolute angle in degree.
	The input values for spd and acc are used to define velocity and acceleration accordingly. The spd and acc should be a number between 0 and 1. Smaller number represents slower. When

	the input value is -1, the joint moves with the default value.
	The speed and acceleration of the motion are defined by spd and acc in the last command.
Example	"blend jnt add pt 0.4, 0.1, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0"

Command	blend_jnt
Script	blend_jnt move_pt
Descript.	
	This command runs the joint blending motion.
	Each joint follows the angles defined in the joint blending sequence.
Example	"blend_jnt move_pt"

blend_tcp

Command	blend_tcp
Script	blend_tcp clear_pt
Descript.	
	This command delete all desired TCP values previously defined in the TCP blending sequence.
	This command should be used at the beginning of blend_tcp programming.
Example	"blend_tcp clear_pt"

Command	blend_tcp
Script	blend_tcp add_pt spd, acc, radius, x, y, z, rx, ry, rz
Descript.	This command adds a desired TCP value to the TCP blending sequence.
	The input value for radius determines the smoothness of blending. The value is in mm. Arithmetically it is the distance from the straight line between the first and third points to the second point. Thus, when it is set to 0, the blending becomes maximized and the robot skips the second point.
	The input values for x, y, z are used to define the desired position to go. The values should be a number in mm.
	The input values for rx, ry, rz are used to define the desired orientation to go. It is represented as roll, pitch and yaw in Euler angle, accordingly. The values should be a number in degree.
	The input values for spd and acc are used to define velocity and acceleration accordingly. The spd and acc should be a number between 0 and 1. Smaller number represents slower. When the input value is -1, the joint moves with the default value.
	The speed and acceleration of the motion are defined by spd and acc in the last command.
Example	"blend_tcp add_pt 0.4, 0.1, 30.0, 100.0, 100.0, 300.0, 0.0, 90.0, 0.0"

Command	blend_tcp
Script	blend_tcp move_pt

Descript.	
	This command runs the TCP blending motion.
	TCP follows the positions and orientations of TCP defined in the TCP blending sequence.
Example	"blend_tcp move_pt"

The following commands are commands to control the output values of the digital and analog ports of switchboards and tool flanges.

There are three commands.

- 1) digital_out
- 2) analog_out
- 3) tool_out

digital_out

Script	digital_out d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15
Descript.	This command generates a signal through the digital output port.
	The input values for d0 to d15 are used to activate the port. The number should be 0 or 1. 0 and 1 mean off and on, accordingly.
	-1 can be used other than 0 or 1. In this case, the port with -1 keeps the previous status.
Example	"digital_out 1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1"

analog_out

Script	analog_out a0, a1, a2, a3
Descript.	
	This command generates a signal through the analog output port.
	The input values for a0 to a3 are the output voltage of the port. The voltage should be a number between 0 and 10.
	-1 can be used other than a number between 0 and 10. In this case, the port with -1 keeps the previous voltage.
Example	"analog_out 5.0, 5.0, -1, -1"

tool_out

Script	tool_out volt, d0, d1
Descript.	This command sets the voltage and corresponding digital output ports at the tool flange.
	The input value for volt is used to set the voltage to generate. The value should be 0, 12 or 24. Any number other than that will be ignored.
	-1 can be used to keep the voltage previously defined.
	The input values for d0 to d1 are used to activate the port. The number should be 0 or 1. 0 and 1 mean off and on, accordingly.
	-1 can be used other than 0 or 1. In this case, the port with -1 keeps the previous status.
Example	"tool_out 12, 1, 0"

The following commands are for initialization, termination, operation mode change, and speed change.

- 1) mc
- 2) shutdown
- 3) pgmode
- 4) sdw

mc

Script	mc jall init
Descript.	This command starts initialization process.
Example	"mc jall init"

shutdown

Script	shutdown
Descript.	This command terminates the robot operation and turns off the power.
Example	"shutdown"

pgmode

Script	pgmode mode_type			
Descript.	This command changes the mode between real and simulation modes.			
	The input values for mode_type should be "real" or "simulation". In "real", the robot moves when commanded. In "simulation", the robot does not moves but the internal reference values changes. The default is "simulation".			
Example	"pgmode real"			
	"pgmode simulation"			

sdw (shared data write)

Script	sdw default_speed spd			
Descript.	This command set the speed of the motion for overall program.			
	The input value for spd is a number between 0 and 1. Smaller value means slower. When the value is 0, the robot does not move even if a command is executed. In this case, the reference value does not change either.			
	When the pendent is connected to the robot while script programming is running, the speed can be adjusted via the pendent. Robot always follows the speed at the last command.			
Example	"sdw default_speed 0.5"			

The last command explained is the task script.

task

Script	task load work_file_name
Descript.	This command loads a work file previously programmed. The format of the work file is ".wsl". The input value for work_file_name is the path and file name without ".wsl" If the file is saved via the pendent, the file can be loaded without connecting to the pendent.
Example	"task load test_file"

Script	task play option			
Descript.				
	This command runs the work file loaded.			
	The input value for option is blank or "once".			
	When option leaves empty, it runs the work file repeatably until the number of repeatation is met.			
	When "once" is set, it runs the work file once.			
Example	"task play"			
	"task play once"			

Script	task repeat num
Descript.	
	This command sets the number of repeatation for the work file.
	The input value for num is the number of repeatation. The number should be an integer. -1 can be used to run the work file unlimitedly.
	The number of repeatation set by this command is maintained until power off. After rebooting the robot, this value is set by a number in the pendent.
Example	"task repeat 5"
	"task repeat -1"

Script	task pause		
Descript.			
	This command pauses the motion.		
	To resume the motion, use "task resume_a" command.		
	During pausing, the robot ignores all other commands.		
Example	"task pause"		

Script	task stop
Descript.	
	This command terminates the motion completely.
	This command results in immediate stop of the motion. It is recommended using "task pause before this command to smoothly stop the motion.
Example	"task stop"

Script	task resume_a
Descript.	
	This command resumes the moiton paused by "task pause", "alarm" or "debug".
Example	"task resume a"

Script	task resume_b
Descript.	
	This command resumes the motion paused by the collision.
Example	"task resume_b"

In order to use external control, the external computer must be connected to the control box. The connection uses TCP / IP communication and the corresponding IP address can be set in the pendant. The result is displayed on the screen on control panel. Ports 5000 and 5001 open for external control. Port 5000 is a port for receiving commands, and port 5001 is a port for requesting and sending data indicating robot status. For convenience, port 5000 is called the command port and port 5001 is called the data port.

Users can send the script command described above to the command port. The command port has a filter for the first command, so if the start is not a script command as described above, such as "jointall", "movetcp", "mc", "pgmode", etc., the response is "The command is not allowed". If the command starts with a normal command and passes the input statement to the parser, the response is "The command was executed".

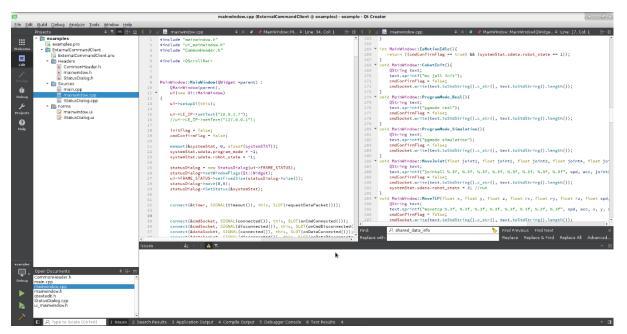
When the command "reqdata" is sent to the data port, robot status information is sent to the data port in response. The format of the data is shown below.

Header (4 Byte)				Data (n Byte)
0x24	0x24 Size&0xFF		0x03	Data

The format of the data is shown below. Depending on the system version, the size of the data may be different. However, the order is consistent, please refer to the table below.

Offset	Туре	Description		
0	Float	Task Time elapsed in second (reset at the beginning of the task)		
1	Float	Reference angle of base joint in degree.		
2	Float	Reference angle of shoulder joint in degree.		
3	Float	Reference angle of elbow joint in degree.		
4	Float	Reference angle of wrist1 joint in degree.		
5	Float	Reference angle of wrist2 joint in degree.		
6	Float	Reference angle of wrist3 joint in degree.		
7	Float	Encoder angle of base joint in degree.		
8	Float	Encoder angle of shoulder joint in degree.		
9	Float	Encoder angle of elbow joint in degree.		
10	Float	Encoder angle of wrist1 joint in degree.		
11	Float	Encoder angle of wrist2 joint in degree.		
12	Float	Encoder angle of wrist3 joint in degree.		
13	Float	Current value of base joint in ampere		
14	Float	Current value of shoulder joint in ampere.		
15	Float	Current value of elbow joint in ampere.		
16	Float	Current value of wrist1 joint in ampere.		
17	Float	Current value of wrist2 joint in ampere.		
18	Float	Current value of wrist3 joint in ampere.		
19	Float	Reference position of TCP in X direction in mm.		
20	Float	Reference position of TCP in Y direction in mm.		
21	Float	Reference position of TCP in Z direction in mm.		
22	Float	Reference orientation of TCP in Roll (RX) in degree.		
23	Float	Reference orientation of TCP in Pitch (RY) in degree.		
24	Float	Reference orientation of TCP in Yaw (RZ) in degree.		
25	Float	Same as 19.		
26	Float	Same as 20.		
27	Float	Same as 21.		
28	Float	Same as 22.		
29	Float	Same as 23.		
30	Float	Same as 24.		
31	Float	Voltage at analog input port #0.		
32	Float	Voltage at analog input port #1.		
33	Float	Voltage at analog input port #2.		
34	Float	Voltage at analog input port #3.		
35	Float	Voltage at analog output port #0.		
36	Float	Voltage at analog output port #1.		
37	Float	Voltage at analog output port #2.		
38	Float	Voltage at analog output port #3.		
39	Int	On/Off status at digital input port #0 (on:1 / off:0).		
40	Int	On/Off status at digital input port #1 (on:1 / off:0).		
41	Int	On/Off status at digital input port #2 (on:1 / off:0).		
42	Int	On/Off status at digital input port #3 (on:1 / off:0).		
43	Int	On/Off status at digital input port #4 (on:1 / off:0).		
44	Int	On/Off status at digital input port #5 (on:1 / off:0).		
45	Int	On/Off status at digital input port #6 (on:1 / off:0).		
46	Int	On/Off status at digital input port #7 (on:1 / off:0).		
47	Int	On/Off status at digital input port #8 (on:1 / off:0).		
48	Int	On/Off status at digital input port #9 (on:1 / off:0).		

40	Int	On/Off status at digital input part #10 (ap:1 / aff:0)
49 50	Int Int	On/Off status at digital input port #10 (on:1 / off:0). On/Off status at digital input port #11 (on:1 / off:0).
51	Int	On/Off status at digital input port #12 (on:1 / off:0).
52	Int	On/Off status at digital input port #3 (on:1 / off:0).
53	Int	On/Off status at digital input port #14 (on:1 / off:0).
54	Int	On/Off status at digital input port #15 (on:1 / off:0).
55	Int	On/Off status at digital output port #0 (on:1 / off:0).
56	Int	On/Off status at digital output port #1 (on:1 / off:0).
57	Int	On/Off status at digital output port #2 (on:1 / off:0).
58	Int	On/Off status at digital output port #3 (on:1 / off:0).
59	Int	On/Off status at digital output port #4 (on:1 / off:0).
60	Int	On/Off status at digital output port #5 (on:1 / off:0).
61	Int	On/Off status at digital output port #6 (on:1 / off:0).
62	Int	On/Off status at digital output port #7 (on:1 / off:0).
63	Int	On/Off status at digital output port #8 (on:1 / off:0).
64	Int	On/Off status at digital output port #9 (on:1 / off:0).
65	Int	On/Off status at digital output port #10 (on:1 / off:0).
66	Int	On/Off status at digital output port #11 (on:1 / off:0).
67	Int	On/Off status at digital output port #12 (on:1 / off:0).
68	Int	On/Off status at digital output port #13 (on:1 / off:0).
69	Int	On/Off status at digital output port #14 (on:1 / off:0).
70	Int	On/Off status at digital output port #15 (on:1 / off:0).
71	Float	Temperature of motor drive at base joint in Celsius.
72	Float	Temperature of motor drive at shoulder joint in Celsius.
73	Float	Temperature of motor drive at elbow joint in Celsius.
74	Float	Temperature of motor drive at wrist1 joint in Celsius.
75	Float	Temperature of motor drive at wrist2 joint in Celsius.
76	Float	Temperature of motor drive at wrist3 joint in Celsius.
77	Int	Location of program counter in the task (The location where Step command
		executes).
78	Int	Desired number of repetitions.
79	Int	Current action number of the task.
80	Int	Current number of repetitions.
81	Float	Task time elapsed in seconds (not reset at the beginning of the task)
82	Int	Task status (1: Idle, 2: Paused, 3: Run)
83	Float	Motion speed (0~1).
84	Float	Robot status (1: stopped, 3: in operation)
85	Float	Status of power in terms of LSB offset
		0: 48V input
		1: 48V output
		2: 24V status
		3: E-stop status
		4: PC switch status
		5: Motion controller status
86	Float	Not used
87	Float	Not used
88	Float	Not used
89	Float	Not used
90	Float	Not used
91	Float	Not used
92	Int	Status of motor controller at base joint.
93	Int	Status of motor controller at shoulder joint.
94	Int	Status of motor controller at elbow joint.
95	Int	Status of motor controller at wrist1 joint.
96	Int	Status of motor controller at wrist2 joint.

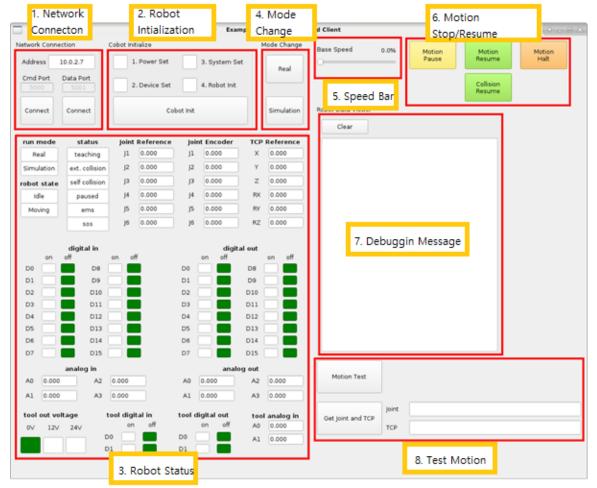

Status of motor controller in terms of LSB offset. 0: FET 1: Position control 2: Status of initialization 3: In control mode 4: Nonius error 5: Low battery 6: Calibration mode 7: Multiturn error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Low) 15: Position error (Lismulation mode, Oreal mode) 100 101 102 103: Temperature error 104 105: Position error (Lismulation mode, Oreal mode) 100 101 101 102 103 104 Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Power conversion error 1 (in control box) 4: Parameter check 5: Collision check 6: Initialization error 1: SMPS err	97	Int	Status of motor controller at wrist3 joint.
1: Position control 2: Status of Initialization 3: In control mode 4: Nonus error 5: Calibration mode 7: Multitum error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (High) 150 100 101 Operation mode (1:simulation mode, 0:real mode) 101 101 102 103 104 105 105 106 107 107 108 109 100 101 101 102 103 104 105 105 106 107 107 108 109 101 102 101 103 104			
2: Status of initialization 3: In control mode 4: Nonius error 5: Low battery 6: Calibration mode 7: Multiturn error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error (Low) 90 10: Dr/Off collision detection (1:on, 0:off) 90 101 0. Dr/Off collision detection (1:on, 0:off) 90 101 0. Dr/Off collision detection (1:on, 0:off) 90 101 102 103 104 105 105 106 107 108 109 101 101 102 103 104 105 105 106 107 108 109 101 102 103 104 <td></td> <td></td> <td>0: FET</td>			0: FET
3: In control mode 4: Nonius error 5: Low battery 6: Calibration mode 7: Multiturn error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Low) 15: Position error (Lion, 0:off) 90 100 101 101 102 103 104 0n/Off teaching mode (1:on, 0:off) 100 101 101 101 101 101 101 101 101 101 101 101 101 101 101 102 103 104 105 105 106 107 108 108 109 101 <			1: Position control
4: Nonius error 5: Low battery 6: Calibration mode 7: Multiturn error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FFT drive error 13: Temperature error 14: Position error (Low) 15: Position error (Low) 16: Op/Off caching mode (1:on, 0:off) 99 100 101 101 102 103 104 105 105 106 107 108 109 101 101 102 103 104 105 105 106 107 108 109 101 102 103 104 105 105 106 107 108 109 100 <td></td> <td></td> <td>2: Status of initialization</td>			2: Status of initialization
S: Low battery 6: Calibration mode 7: Multitum error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Liow) 15: Position error (Liow) 16: Dry Control (Lion, 0:off) 99 Int On/Off collision detection (1:on, 0:off) 100 Int 101 Int 105: Default O: Default 1101 Int 1101 Int 1101 Int 1101 Int 101 Int 102 Int 103 Int 104 Information of initialization process 0: Device check S: Collision check 102 Int Error codes in initialization 103 Int Error codes in initialization 104 Error codes in ortrol 2 (in control box) 105 Intialization completed without error 116 Error codes in orror 117 <td></td> <td></td> <td>3: In control mode</td>			3: In control mode
6: Calibration mode 7: Multitum error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Low) 15: Position error (Ligh) 99 10< On/Off collision detection (1:on, 0:off)			4: Nonius error
6: Calibration mode 7: Multitum error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Low) 15: Position error (Ligh) 99 10< On/Off collision detection (1:on, 0:off)			
7: Multitum error 8: JAM error 9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Ligh) 98 1nt On/Off collision detection (1:on, 0:off) 99 Int 0n/Off teaching mode (1:simulation mode, 0:real mode) 101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 6: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 9: Tool flange connection error 9: Tool flange conenteror <td></td> <td></td> <td></td>			
9: Over Current error 10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Liow) 15: Position error (High) 98 100 11 07/Off collision detection (1:on, 0:off) 100 11 07/Off collision detection (1:on, 0:off) 100 110 111 0. Operation mode (1:simulation mode, 0:real mode) 101 101 101 101 101 101 102 103 104 105 105 106 107 108 109 101 101 102 103 104 105 105 106 107 108 108 109 1010 1011			
10: Big error 11: Input error 12: FET drive error 13: Temperature error 14: Position error (Low) 15: Position error (High) 98 100 101 110 110 110 1111 1111 1111 1111 1111 1111 11111 1111			8: JAM error
11: Input error 12: FET drive error 13: Temperature error 14: Position error (lugh) 15: Position error (lugh) 98 Int On/Off collision detection (1:on, 0:off) 100 Int Operation mode (1:simulation mode, 0:real mode) 101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange orientation error 9: Tool flange orientation error 9: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 1 1			9: Over Current error
11: Input error 12: FET drive error 13: Temperature error 14: Position error (lugh) 15: Position error (lugh) 98 Int On/Off collision detection (1:on, 0:off) 100 Int Operation mode (1:simulation mode, 0:real mode) 101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 1 12: Motor input 16/17 short error 1			10: Big error
12: FET drive error 13: Temperature error 14: Position error (High) 98 Int 0n/Off collision detection (1:on, 0:off) 99 Int 0n/Off teaching mode (1:sinulation mode, 0:real mode) 100 Int 11 Voltage check 12: Device check 3: Position control start 4: Parameter check 5: Collision check 5: Collision check 6: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 4: Parameter of error 5: Connection error 5: Consection error 5: Tool flange connection error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 2 (in control box) 4: Power conversion error 1 4: Parameter or 5: Connection error 5: Tool flange orientation error 10: Motor controller encoder error 1 1: Motor controller encoder error 1 11: Motor controller encoder error 2 1: Digital input 16/17 short error 13: 48V switch error 1: 3: 48V switch error 13: 48V switch error 1: Digita			-
13: Temperature error 14: Position error (Low) 15: Position error (High) 98 Int 0n/Off collision detection (1:on, 0:off) 100 Int 0peration mode (1:simulation mode, 0:real mode) 101 Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 103 Prover conversion error 1 104 Prover conversion error 2 (in control box) 4: Power conversion error 2 (in control box) 4: Power conversion error 3: Power conversion error 1 105 Intialization error 7: Payload error 8: Tool flange connection error 9: Tool flange control er error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 1 12: Digital input 16/17 short error 13: 48V switch error 13: 48V switch error 13: 48V switch error 13: 48V switch error 13: 48V switch error 14: Te			
14: Position error (Low) 15: Position error (High) 98 Int On/Off collision detection (1:on, 0:off) 100 Int Operation mode (1:simulation mode, 0:real mode) 101 Int Operation of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 103 Int Error codes in initialization 104 For codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 4: Power conversion error 1 (in control box) 4: Power conversion error 1 (in control box) 5: Connection error 5: Contection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange connection error 9: Tool flange connection error 10: Motor controller encoder error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 1			
15: Position error (High) 98 Int On/Off collision detection (1:on, 0:off) 99 Int On/Off teaching mode (1:sin, 0:off) 100 Int Operation mode (1:sinulation mode, 0:real mode) 101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange connection error 9: Tool flange connection error 10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 13: 48V switch error 14: Teaching button error 103 Float Voltage of analog signal por			
98 Int On/Off collision detection (1:on, 0:off) 99 Int On/Off teaching mode (1:on, 0:off) 100 Int Operation mode (1:simulation mode, 0:real mode) 101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 6 101 Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 4: Power conversion error 1 (in control box) 5: Connection error 6: Initialization error 6: Initialization error 7: Payload error 8: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 103 Float Voltage of analog signal port #0 at tool flange. 104 Float Voltage of analog signal port #1 at tool flange (on:1 / off:0). 105 Int On/Off status of digital signal port #1 at tool flange (on:1 / off:0). 106 Int On/O			
99 Int On/Off teaching mode (1:on, 0:off) 100 Int Operation mode (1:simulation mode, 0:real mode) 101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 6: Initialization done 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange contection error 9: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 103 Float Voltage of analog signal port #0 at tool flange. 104 Float Voltage of analog signal port #1 at tool flange (on:1 / off:0). 105 Int On/Off status of digital signal port #1 at tool flange (on:1 / off:0). 106 Int On/Of	98	Int	
100 Int Operation mode (1:simulation mode, 0:real mode) 101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 6: Initialization done 6: Initialization completed without error 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 13: 48V switch error 14: Teaching button error 103 Float Voltage of analog signal port #0 at tool flange. 104 Float Voltage of analog signal port #1 at tool flange (on:1/off:0). 105 Int On/Off status of digital signal port #0 at tool flange (on:1/off:0). 106 Int On/Off		-	
101 Int Information of initialization process 0: Default 1: Voltage check 2: Device check 3: Position control start 4: Parameter check 5: Collision check 6: Initialization done 6: Initialization 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange connection error 9: Tool flange connection error 10: Motor controller encoder error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 489 switch error 14: Teaching button error 103 Float Voltage of analog signal port #0 at tool flange. 104 Float Voltage of digital signal port #1 at tool flange (on:1 / off:0). 105 Int On/Off status of digital signal port #0 at tool flange (on:1 / off:0). 106 Int On/Off st		-	
0: Default1: Voltage check2: Device check3: Position control start4: Parameter check5: Collision check6: Initialization done1021041051051061071081091091001011021021031041051051061071081091091001011011021031031041051051061071071081091091091091091091091091091091091091091091091001001001001001001001001001010102103104105105106107107108109109109109109109100100100100100100100100101102 </td <td></td> <td>-</td> <td></td>		-	
1: Voltage check2: Device check3: Position control start4: Parameter check5: Collision check6: Initialization done102IntError codes in initialization0: Initialization completed without error1: SMPS error2: E-Stop switch error3: Power conversion error 1 (in control box)4: Power conversion error 2 (in control box)4: Power conversion error 2 (in control box)5: Connection error6: Initialization error7: Payload error8: Tool flange connection error9: Tool flange connection error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange (on:1 / off:0).104FloatVoltage of analog signal port #1 at tool flange (on:1 / off:0).105Int0n/Off status of digital signal port #0 at tool flange (on:1 / off:0).106Int0n/Off output status of digital signal port #1 at tool flange (on:1 / off:0).108Int0n/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.	101	inc	·
2: Device check 3: Position control start 4: Parameter check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange connection error 9: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error 14: Teaching button error 103 Float Voltage of analog signal port #0 at tool flange (on:1 / off:0). 104 Float Voltage of analog signal port #1 at tool flange (on:1 / off:0). 105 Int 0n/Off status of digital signal port #0 at tool flange (on:1 / off:0). <			
3: Position control start 4: Parameter check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1:SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange connection error 10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error 13: 48V switch error 14: Teaching button error 103 Float Voltage of analog signal port #0 at tool flange. 104 Float Voltage of analog signal port #1 at tool flange (on:1 / off:0). 105 Int 106 Int 0n/Off status of digital signal port #1 at tool flange (on:1 / off:0). 106 Int On/Off output status of digital signal p			-
4: Parameter check 5: Collision check 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error 13: 48V switch error 14: Teaching button error 10: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error 10: Motor controller encoder error 1 10: Motor controller encoder error 1 10: Motor controller encoder error 1 11: Motor controller encoder error 1 12: Digital input 16/17 short error			
5: Collision check 6: Initialization done 102 Int Error codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error 103 Float Voltage of analog signal port #0 at tool flange. 104 Float 105 Int 0n/Off status of digital signal port #0 at tool flange (on:1 / off:0). 106 Int 0n/Off output status of digital signal port #1 at tool flange (on:1 / off:0). 107 Int 0n/Off output status of digital signal port #1 at tool flange (on:1 / off:0). 107 Int 0n/Off output status of digital signal port #1 at tool flange (o			
6: Initialization done102IntError codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 1 9: Tool flange orientation error 1 9: Tool flange orientation error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 13: 48V switch error 14: Teaching button error 14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.104FloatVoltage of analog signal port #1 at tool flange (on:1 / off:0).106IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			
102IntError codes in initialization 0: Initialization completed without error 1: SMPS error 2: E-Stop switch error 3: Power conversion error 1 (in control box) 4: Power conversion error 2 (in control box) 5: Connection error 6: Initialization error 7: Payload error 8: Tool flange connection error 1 11: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 13: 48V switch error 13: 48V switch error 14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange. 105104FloatVoltage of digital signal port #1 at tool flange (on:1 / off:0). 106107IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage of up to the tool flange (on:1 / off:0).			
0: Initialization completed without error1: SMPS error2: E-Stop switch error3: Power conversion error 1 (in control box)4: Power conversion error 2 (in control box)5: Connection error6: Initialization error7: Payload error8: Tool flange connection error9: Tool flange connection error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.105106107107108109FloatVoltage of digital signal port #0 at tool flange (on:1 / off:0).109FloatVoltage of digital signal port #1 at tool flange (on:1 / off:0).107108109FloatVoltage output at tool flange.	102	Int	
1: SMPS error2: E-Stop switch error3: Power conversion error 1 (in control box)4: Power conversion error 2 (in control box)5: Connection error6: Initialization error7: Payload error8: Tool flange connection error9: Tool flange orientation error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange (on:1 / off:0).106Int0n/Off status of digital signal port #0 at tool flange (on:1 / off:0).107108Int0n/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.	102	inc	
2: E-Stop switch error3: Power conversion error 1 (in control box)4: Power conversion error 2 (in control box)5: Connection error6: Initialization error7: Payload error8: Tool flange connection error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.105106107107108109FloatVoltage output status of digital signal port #0 at tool flange (on:1 / off:0).107108109FloatVoltage output status of digital signal port #1 at tool flange (on:1 / off:0).			
3: Power conversion error 1 (in control box)4: Power conversion error 2 (in control box)5: Connection error6: Initialization error7: Payload error8: Tool flange connection error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.104FloatVoltage of analog signal port #0 at tool flange (on:1 / off:0).106IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).107108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			
4: Power conversion error 2 (in control box)5: Connection error6: Initialization error7: Payload error8: Tool flange connection error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error104FloatVoltage of analog signal port #0 at tool flange.105106107107108108IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).108109FloatVoltage output at tool flange.			
5: Connection error6: Initialization error7: Payload error8: Tool flange connection error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error104FloatVoltage of analog signal port #0 at tool flange.105106107107108108109FloatVoltage output at tool flange port #1 at tool flange (on:1 / off:0).107108109FloatVoltage output at tool flange port #1 at tool flange (on:1 / off:0).			
 6: Initialization error 7: Payload error 8: Tool flange connection error 9: Tool flange orientation error 10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error 103 Float Voltage of analog signal port #0 at tool flange. 104 Float Voltage of analog signal port #1 at tool flange. 105 Int On/Off status of digital signal port #1 at tool flange (on:1 / off:0). 106 Int On/Off output status of digital signal port #0 at tool flange (on:1 / off:0). 107 Int On/Off output status of digital signal port #1 at tool flange (on:1 / off:0). 108 Int On/Off output status of digital signal port #1 at tool flange (on:1 / off:0). 109 Float Voltage output at tool flange.			
7: Payload error8: Tool flange connection error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.105106107107108108109FloatVoltage of digital signal port #1 at tool flange (on:1 / off:0).107108109FloatVoltage output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output status of digital signal port #1 at tool flange (on:1 / off:0).108109FloatVoltage output at tool flange.			
8: Tool flange connection error9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.105106107108109FloatVoltage of digital signal port #1 at tool flange (on:1 / off:0).106107108109FloatVoltage of digital signal port #1 at tool flange (on:1 / off:0).			
9: Tool flange orientation error10: Motor controller encoder error 111: Motor controller encoder error 212: Digital input 16/17 short error13: 48V switch error14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.105IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).106IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0)109FloatVoltage output at tool flange.			•
10: Motor controller encoder error 1 11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.104FloatVoltage of analog signal port #1 at tool flange.105IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).106IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			-
11: Motor controller encoder error 2 12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.104FloatVoltage of analog signal port #1 at tool flange.105IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).106IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			-
12: Digital input 16/17 short error 13: 48V switch error 14: Teaching button error103Float104FloatVoltage of analog signal port #0 at tool flange.105IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).106IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			
13: 48V switch error 14: Teaching button error103Float104FloatVoltage of analog signal port #0 at tool flange.105Int0n/Off status of digital signal port #0 at tool flange (on:1 / off:0).106Int0n/Off output status of digital signal port #0 at tool flange (on:1 / off:0).107Int0n/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108Int0n/Off output status of digital signal port #1 at tool flange (on:1 / off:0)109FloatVoltage output at tool flange.			
14: Teaching button error103FloatVoltage of analog signal port #0 at tool flange.104FloatVoltage of analog signal port #1 at tool flange.105IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).106IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			
103FloatVoltage of analog signal port #0 at tool flange.104FloatVoltage of analog signal port #1 at tool flange.105IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).106IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			
104FloatVoltage of analog signal port #1 at tool flange.105IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).106IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.	102	Float	
105IntOn/Off status of digital signal port #0 at tool flange (on:1 / off:0).106IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0).109FloatVoltage output at tool flange.			
106IntOn/Off status of digital signal port #1 at tool flange (on:1 / off:0).107IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0)109FloatVoltage output at tool flange.			
107IntOn/Off output status of digital signal port #0 at tool flange (on:1 / off:0).108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0)109FloatVoltage output at tool flange.			
108IntOn/Off output status of digital signal port #1 at tool flange (on:1 / off:0)109FloatVoltage output at tool flange.			
109 Float Voltage output at tool flange.			
		Int	
	109	Float	Voltage output at tool flange.
110 Int Status of collision (detected:1)	110	Int	Status of collision (detected:1)
111 Int Status of device errors	111	Int	Status of device errors
0: No error			0: No error
1: PVL error			1: PVL error

2: CPU error 3: Big error 4: Input error 5: JAM error 6: Over current error 7: Joint angle error 8: Control mode error 9: Offset error between reference and encoder 10: Current error at upper level controller 11: Temperature error 12: Speed error in teaching 112 114 Int Self collision (on: 1 / off:0) 113 Int Robot paused (paused:1) 114 Int Status of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity 115 Int 0n/Off status of digital input port #16 (on:1 / off:0). 116 Int 117 Int 118 Int 119 Int 119 Int 1100x 0 check mode 120 Int			
4: Input error 5: JAM error 6: Over current error 7: Joint angle error 8: Control mode error 9: Offset error between reference and encoder 10: Current error at upper level controller 11: Temperature error 12: Speed error in teaching 112 Int Self collision (on:1 / off:0) 113 Int Robot paused (paused:1) 114 Int Status of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity 115 Int 0n/Off status of digital input port #16 (on:1 / off:0). 117 Int 118 Int 119 Int			2: CPU error
5: JAM error 6: Over current error 7: Joint angle error 8: Control mode error 9: Offset error between reference and encoder 10: Current error at upper level controller 11: Temperature error 12: Speed error in teaching 112 113 114 115 115 116 117 118 119 119			3: Big error
6: Over current error 7: Joint angle error 8: Control mode error 9: Offset error between reference and encoder 10: Current error at upper level controller 11: Temperature error 12: Speed error in teaching 112 113 114 115 115 116 117 118 119 119			4: Input error
7: Joint angle error8: Control mode error9: Offset error between reference and encoder10: Current error at upper level controller11: Temperature error12: Speed error in teaching11211311411411511511611711711811911911911911011111211211311411511511611711811811911411511511611711811911411511511611711811911411511511611711811911411511511611711811911411511511611711811911411511511611711811911411511511611711811811911411511511611711811			5: JAM error
8: Control mode error 9: Offset error between reference and encoder 10: Current error at upper level controller 11: Temperature error 12: Speed error in teaching 112 114 Status of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity 115 Int 0n/Off status of digital input port #16 (on:1 / off:0). 117 Int Inbox 0 Trap occurred 118 Int Inbox 0 check mode			6: Over current error
9: Offset error between reference and encoder10: Current error at upper level controller11: Temperature error12: Speed error in teaching112113114114115115116117117118119119119119119119119110111112112113114115115116117118118119110110111511211311411511511611711811911411511511611711811911411511511611711811811911111211311411511511611711811811911111211311411511511611711811811911151117111711171117111711171117 <td></td> <td></td> <td>7: Joint angle error</td>			7: Joint angle error
10: Current error at upper level controller 11: Temperature error 12: Speed error in teaching11211311411411411511511611711811911911911911911911011101111111111111112111211131114111511151115111611171117111811191115111011101111111211131114111511151117111111111112111311141115111711111111111211131114111511151115111111111111111111121113113111411151			8: Control mode error
11: Temperature error 12: Speed error in teaching112IntSelf collision (on:1 / off:0)113IntRobot paused (paused:1)114IntStatus of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity115Int0n/Off status of digital input port #16 (on:1 / off:0).117IntInbox 0 Trap occurred118IntInbox 0 check mode			9: Offset error between reference and encoder
12: Speed error in teaching112IntSelf collision (on:1 / off:0)113IntRobot paused (paused:1)114IntStatus of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity115IntOn/Off status of digital input port #16 (on:1 / off:0).116IntOn/Off status of digital input port #17 (on:1 / off:0).117IntInbox 0 Trap occurred118IntInbox 0 check mode			10: Current error at upper level controller
112IntSelf collision (on:1 / off:0)113IntRobot paused (paused:1)114IntStatus of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity115IntOn/Off status of digital input port #16 (on:1 / off:0).116IntOn/Off status of digital input port #17 (on:1 / off:0).117IntInbox 0 Trap occurred119IntInbox 0 check mode			11: Temperature error
113IntRobot paused (paused:1)114IntStatus of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity115IntOn/Off status of digital input port #16 (on:1 / off:0).116IntOn/Off status of digital input port #17 (on:1 / off:0).117IntInbox 0 Trap occurred118IntInbox 1 Trap occurred119IntInbox 0 check mode			12: Speed error in teaching
114IntStatus of motion errors 0: No error 1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity115IntOn/Off status of digital input port #16 (on:1 / off:0).116IntOn/Off status of digital input port #17 (on:1 / off:0).117IntInbox 0 Trap occurred118IntInbox 1 Trap occurred119IntInbox 0 check mode	112	Int	Self collision (on:1 / off:0)
0: No error1: TCP motion commanded when the robot is fully stretched out.2: TCP command unreachable3: Joint command crossed mechanical limit4: TCP command singularity1151161171171181191191101101111121131141151151161171181191191111111121131141151151161171181191191111111121131141151151161171171181191191111111111111111121112113114115115116117117118119111 <td>113</td> <td>Int</td> <td>Robot paused (paused:1)</td>	113	Int	Robot paused (paused:1)
1: TCP motion commanded when the robot is fully stretched out. 2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity 115 Int 0n/Off status of digital input port #16 (on:1 / off:0). 116 Int 0n/Off status of digital input port #17 (on:1 / off:0). 117 Int 118 Int 119 Int Inbox 0 check mode	114	Int	Status of motion errors
2: TCP command unreachable 3: Joint command crossed mechanical limit 4: TCP command singularity 115 Int 0n/Off status of digital input port #16 (on:1 / off:0). 116 Int 0n/Off status of digital input port #17 (on:1 / off:0). 117 Int 118 Int 119 Int Inbox 0 check mode			0: No error
3: Joint command crossed mechanical limit 4: TCP command singularity 115 Int 0n/Off status of digital input port #16 (on:1 / off:0). 116 Int 0n/Off status of digital input port #17 (on:1 / off:0). 117 Int 118 Int 119 Int Inbox 0 check mode			1: TCP motion commanded when the robot is fully stretched out.
4: TCP command singularity 115 Int On/Off status of digital input port #16 (on:1 / off:0). 116 Int On/Off status of digital input port #17 (on:1 / off:0). 117 Int Inbox 0 Trap occurred 118 Int Inbox 1 Trap occurred 119 Int Inbox 0 check mode			2: TCP command unreachable
115IntOn/Off status of digital input port #16 (on:1 / off:0).116IntOn/Off status of digital input port #17 (on:1 / off:0).117IntInbox 0 Trap occurred118IntInbox 1 Trap occurred119IntInbox 0 check mode			3: Joint command crossed mechanical limit
116IntOn/Off status of digital input port #17 (on:1 / off:0).117IntInbox 0 Trap occurred118IntInbox 1 Trap occurred119IntInbox 0 check mode			4: TCP command singularity
117 Int Inbox 0 Trap occurred 118 Int Inbox 1 Trap occurred 119 Int Inbox 0 check mode	115	Int	On/Off status of digital input port #16 (on:1 / off:0).
118 Int Inbox 1 Trap occurred 119 Int Inbox 0 check mode	116	Int	On/Off status of digital input port #17 (on:1 / off:0).
119 Int Inbox 0 check mode	117	Int	Inbox 0 Trap occurred
	118	Int	Inbox 1 Trap occurred
120 Int Inbox 1 check mode	119	Int	Inbox 0 check mode
	120	Int	Inbox 1 check mode

E.2 Example Program Development Environment

This example has been tested on Debian 9.8 and Ubuntu 18.04. It may work on similar Linux systems. No separate kernel patch is required.

As an integrated development environment (IDE) for programming, use Qt version 5.8 (https://www.qt.io).



Warning:

Qt-based C ++ examples, Visual Studio-based C # examples, and more. Sample programs can be obtained from the manufacturer or distributor.

E.3 Programming Method

This example does not include all the functionality provided by the tablet user interface (UI). Only the information that is useful for monitoring by the user while moving the robot through external control is implemented.

The following image is the programming UI when the example program is executed

The function of each item is as follows.

1) Network Connection

Connect to the robot's main controller through the LAN port on the control box of the RB5 robot. The default IP address for external control is fixed at '10 .0.2.7 '. The server for receiving external control commands connects to port 5000, and the server for requesting and receiving robot status information connects to port 5001. There is a separate button for connecting each one. If the connection is successful, the word 'Connect' on the button is changed to 'Disconnect'. The reverse happens when the connection is lost.

2) Initializing the Robot

After connecting to the robot's main controller press the button marked 'Cobot Init' to start the initialization process. Robots go through a series of processes called 'Power Set', 'Device Set', 'System Set' and 'Robot Init'. As robot's initialization process continues, the white edit box in front of each course turns yellow. Processes that have been completed turn green and processes that have not been performed remain red. When all four boxes turn green, the robot's initialization process is complete and ready for use.

3) Robot Status

The status of the robot can be known from the data received from the main program in the control box. This data is sent to the main program in response to a request for "reqdata" on port 5001. The format of the data is passed in the form of the 'systemSTAT' structure in 'CommonHeader.h'.

run mode: Displays the operation mode of the robot. There are real mode and simulation mode. In real mode, motion commands are actually applied to the robot and the robot moves. In simulation mode, the motion is performed but the command is not sent to the robot. The teaching pendant will show the translucent robot moving. The robot operation mode is represented by the value of the 'program_mode' variable in 'systemSTAT'. A value of 0 for this variable is real mode, and a value of 1 for simulation mode.

robot state: Indicates whether the robot is currently moving or in a state capable of receiving motion commands. The robot state can be known from the value of the 'robot_state' variable of 'systemSTAT'. If this value is 1, the idle state can receive motion commands. If the value is 3, the robot is moving. Motion commands are ignored while the robot is in motion. If the value is 2, the robot is stopped due to unspecified reasons or stopped by the pause command. In this case, it is displayed as paused in the 'status' column.

status: Displays current robot special operation status or abnormal status. 'Teaching' if teaching directly, 'ext. ' collision ',' self-collision 'if it is just before self-collision during operation,' paused 'if stopped by pause command,' ems' if input without solution in robot control algorithm comes in, power problem or robot control problem Will change the color of the 'sos' edit window. This is displayed by referring to the values of 'op_stat_collision_occur', 'op_stat_sos_flag', 'op_stat_self_collision', 'op_stat_soft_estop_occur', 'op_stat_ems_flag' and 'robot_state' in 'systemSTAT'. joint reference: Displays the reference input value for each joint (in degrees). joint encoder: Displays the current encoder value of each joint (in degrees). TCP reference: Displays the reference position value of TCP (in mm and degree).

digital in: Displays the digital input value of the control box. digital out: Displays the digital output value of the control box. analog in: Displays the analog input value of the control box (in voltage). analog out: Displays the analog output value of the control box (in voltage). tool out voltage: Displays the output voltage of the currently set tool flange board (0V, 12V or 24V).

tool digital in: Displays the digital input value of the tool flange board. tool digital out: Displays the digital output value of the tool flange board. tool analog in: Displays the analog input value of the tool flange board

4) Mode Change

The robot can have two modes of operation: simulation mode and real mode. In simulation mode, the robot does not move but the value of the input reference can be changed. In real mode, the robot actually moves in response to user input. To change the robot's operation mode by pressing the button marked 'Real' and 'Simulation'. Immediately after the initialization process, the robot is in simulation mode.

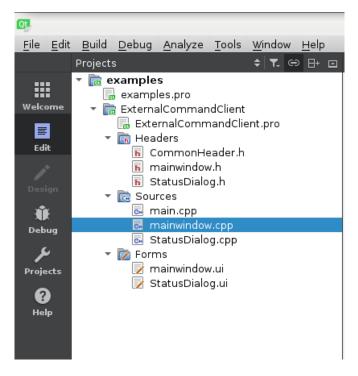
5) Speed Change

Adjust the overall speed of robot motion. Users can move the slider bar between 0% and 100%. This speed is multiplied by the speed given to the robot's motion command.

6) Stop and Resume Motion

Press the 'Motion Pause' button to pause and press 'Motion Halt' to stop the motion completely. In the case of 'Motion Halt', the robot stops abruptly, so it is recommended to use pause first in order to use the robot stably. If the robot is in the paused state, it will not be executed even if another robot is given a motion command. In order to stop the current operation and perform another operation, must finish the current operation completely through the 'Motion Halt' button after the 'Motion Pause' button.

Conversely, users can resume motion paused or stopped by external collision detection. Press the 'Motion Resume' button to resume a paused motion or press the 'Collision Resume' button to resume a motion stopped due to external collision detection. 7) Debugging Message Screen


This is the window where users can view messages for debugging.

8) Test Motion

Press the 'Motion Test' button to perform three basic motions in sequence. Please consider the environment around the robot.

If the user presses the 'Get Joint and TCP' button, the reference angle and TCP value of the current robot's joint will be expressed using the ',' separator in the edit window next to it. It is helpful to copy this value when coding the robot motion sequence into the program.

This example is a single process example with a GUI. In Qt, users can easily place the GUI, generate events like button clicks, and associate them with user's program. See 'mainwindow.ui'.

The core contents of the example are included in 'mainwindow.cpp' and 'mainwindow.h'. In 'CommonHeader.h', users can check the shape of the robot status data.

```
40
          // Cobot Control API -----
 41
           // <CobotInit>
 42
          // : initialize Cobot
 43
          void CobotInit();
 44
          // <MoveJoint>
 45
 46
          // : move to target posture in joint coordinate
          // joint1~joint6 : target joint angle in deg unit
 47
          // spd : speed parameter (0~1: user define or -1: default setting)
 48
           // acc : acceleration parameter (0~1: user define or -1: default setting)
 49
 50
          void MoveJoint(float joint1, float joint2, float joint3, float joint4, float joint5, flo
 51
           // <MoveTCP>
           // : move to target posture in cartesian coordinate
 53
           // x, y, z : target TCP(tool center point) position in mm unit
 54
          // rx, ry, rz : target TCP orientation (Yaw-Pitch-Roll Euler angle) in degree unit
 55
           // spd : speed parameter (0~1: user define or -1: default setting)
           // acc : acceleration parameter (0~1: user define or -1: default setting)
          void MoveTCP(float x, float y, float z, float rx, float ry, float rz, float spd = -1, fl
 5.8
 59
          // <ControlBoxDigitalOut>
 68
 61
           // control digital out ports in control box
          // d0~d15 : digital out value (0 or 1)
 62
 63
           void ControlBoxDigitalOut(int d0, int d1, int d2, int d3, int d4, int d5, int d6, int d7
 64
 65
           // <ControlBoxAnalogOut>
 66
          // control analog out ports in control box
 67
           // a0~a3 : analog out value in voltage unit (0~10)
 68
          void ControlBoxAnalogOut(float a0, float a1, float a2, float a3);
 69
          // <ToolOut>
 70
          // control digital out ports and voltage level in tool flange board
           // volt : reference voltage of tool flange board in voltage unit(0, 12, 24)
 72
           // d0, d1 : digital out value (0 or 1)
 74
          void ToolOut(int volt, int d0, int d1);
 75
 76
          // <ProgramMode_Real>
           // change to 'real robot' mode -- robot will move
 78
          void ProgramMode_Real();
 79
 88
           // <ProgramMode_Simulation>
           // change to 'simulation' mode -- robot will not move except teaching
 81
 82
           void ProgramMode_Simulation();
 83
 84
           // <BaseSpeedChange>
 85
           // change base speed -- base speed will be multiplied to motion velocity
 86
           // spd : normalized base speed (0~1)
 87
          void BaseSpeedChange(float spd);
 88
          // <MotionPause>
 89
 98
           // pause the current motion
 91
           void MotionPause();
 92
 93
           // <MotionHalt>
 94
           // halt the current motion
 95
           // !! CAUTION : user would better escape the motion sequence
          11
 96
                      : if not, the next motion will be activated immediately
          void MotionHalt();
 97
 98
           // <MotionResume>
 00
 100
          // resume the paused motion
          void MotionResume();
103
           // <CollisionResume>
104
           // resume the motion which is paused due to external collision
          void CollisionResume();
106
          // -----
```

The robot control commands that can be used by the user are specified in 'mainwindow.h' as above. The detailed description is as follows.

Function	CobotInit(void)
Script	"mc jall init"
Descript.	This commande starts initialization process. Progress in initialization is shown in 'init_stat_info' and 'init_error' inside 'systemSTAT'.

Function	MoveJoint(float joint1, float joint2, float joint3, float joint4, float joint5, float joint6, float spd = -1, float acc = -1);
Script	"jointall spd, acc, joint1, joint2, joint3, joint4, joint5, joint6"
Descript.	This command moves joints to the desired angles in Joint Space Please refer to script programming.

Function	MoveTCP(float x, float y, float z, float rx, float ry, float rz, float spd = -1, float acc = -1);
Script	"movetcp spd, acc, x, y, z, rx, ry, rz"
Descript.	This command moves TCP to the given position and orientation in Cartesian Space. Please refer to script programming.

Function	MoveCircle_ThreePoint(int type, float x1, float y1, float z1, float rx1, float ry1, float rz1, float x2, float y2, float z2, float rx2, float ry2, float rz2, float spd = -1 , float acc = -1);
Script	 "movecircle threepoints intended spd, acc, x1, y1, z1, rx1, ry1, rz1, x2, y2, z2, rx2, ry2, rz2" "movecircle threepoints constant spd, acc, x1, y1, z1, rx1, ry1, rz1, x2, y2, z2, rx2, ry2, rz2" "movecircle threepoints radial spd, acc, x1, y1, z1, rx1, ry1, rz1, x2, y2, z2, rx2, ry2, rz2"
Descript.	This command generates the circular motion of TCP using three points. type=0 : 'intended' in script programming type=1 : 'constant' in script programming type=2 : 'radial' in script programming Please refer to script programming.

Function	MoveCircle_Axis(int type, float cx, float cy, float cz, float ax, float ay, float az, float rot_angle, float spd = -1, float acc = -1);
Script	"movecircle axis intended spd, acc, rot_angle, cx, cy, cz, ax, ay, az" "movecircle axis constant spd, acc, rot_angle, cx, cy, cz, ax, ay, az" "movecircle axis radial spd, acc, rot_angle, cx, cy, cz, ax, ay, az"
Descript.	This command generates the circular motion of TCP using axes of rotation defined. type=0 : 'intended' in script programming type=1 : 'constant' in script programming type=2 : 'radial' in script programming Please refer to script programming.

Function	MoveJointBlend_Clear(void);
Script	"blend_jnt clear_pt"
Descript.	This command delete all desired joint values previously defined in the joint blending sequence. Please refer to script programming.

Function	MoveJointBlend_AddPoint(float joint1, float joint2, float joint3, float joint4, float joint5, float joint6, float spd = -1, float acc = -1);
Script	"blend_jnt add_pt spd, acc, joint1, joint2, joint3, joint4, joint5, joint6"
Descript.	This command adds a desired joint value to the joint blending sequence. Please refer to script programming.

Function	MoveJointBlend_MovePoint(void);
Script	"blend_jnt move_pt"
	This command runs the joint blending motion.
Descript.	Please refer to script programming.

Function	MoveTCPBlend_Clear(void);
Script	"blend_tcp clear_pt"
Descript.	This command delete all desired TCP values previously defined in the TCP blending sequence. Please refer to script programming.

Function	MoveTCPBlend_AddPoint(float radius, float x, float y, float z, float rx, float ry, float rz, float spd = -1, float acc = -1);
Script	"blend_tcp add_pt spd, acc, radius, x, y, z, rx, ry, rz"
Descript.	This command adds a desired TCP value to the TCP blending sequence. Please refer to script programming.

Function	MoveTCPBlend_MovePoint(void);
Script	"blend_tcp move_pt"
Descript.	This command runs the TCP blending motion. Please refer to script programming.

Function	ControlBoxDigitalOut(int d0, int d1, int d2, int d3, int d4, int d5, int d6, int d7, int d8, int d9, int d10, int d11, int d12, int d13, int d14, int d15)
Script	"digital_out d0, d1, d2, d3, d4,d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15"
Descript.	This command generates a signal through the digital output port. Please refer to script programming.

Function	ControlBoxAnalogOut(float a0, float a1, float a2, float a3)	
Script	"analog_out a0, a1, a2, a3"	
Descript.	This command generates a signal through the analog output port. Please refer to script programming.	

Function	ToolOut(int volt, int d0, int d1)		
Script	"tool_out volt, d0, d1"		
Descript.	This command sets the voltage and corresponding digital output ports at the tool flange. Please refer to script programming.		

Function	ProgramMode_Real(void)	
Script	"pgmode real"	
Descript.	This command changes operation mode to Real Mode.	

Function	ProgramMode_Simulation(void)	
Script	"pgmode simulation"	
Descript.	This command changes operation mode to Simulation Mode	

Function	BaseSpeedChange(float spd)		
Script	"sdw default_speed spd"		
Descript.	This command set the speed of the motion for overall program. Please refert to script programming.		

Function	함수	MotionPause(void)	
Script	스크립트	"task pause"	
Descript.	설명	This command pauses the motion. Please refer to script programming. To execute the other commands, the robot should be resumed by MotionResume or terminated by MotionHalt.	

Function	MotionResume(void)	
Script	"task resume_a"	
Descript.	This command resumes the motion paused by MotionPause. The command does not resume the motion paused by a collision.	

Function	CollisionResume(void)	
Script	task resume_b"	
Descript.	This command resumes the motion paused by a collision. This command does not resume the motion paused by MotionPause.	

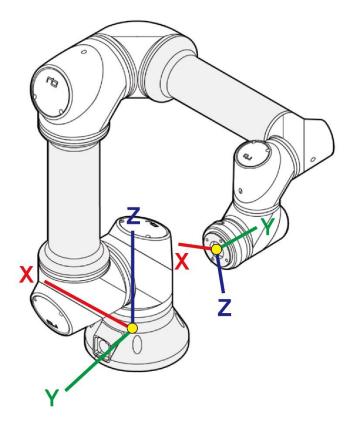
Function	MotionHalt(void)	
Script	"task stop"	
Descript.	This command terminates the motion completely.	

```
int test_flag = false;
123
124 int test_state = 0;
125 void MainWindow::onLogic(){
126
         // Motion Sequence ------
127
128 🔻
         if(test_flag == true){
129 🔻
            switch(test_state){
130
            case 0:
131 -
               if(IsMotionIdle()){
                   print("test_state 0\n");
132
133
                   MoveJoint(0,0,0,0,0,0);
134
                   test_state = 1;
                }
135
136
                break;
137
138
            case 1:
139 🔻
               if(IsMotionIdle()){
140
                   print("test_state 1\n");
                   MoveJoint(50,50,50,50,50,50);
141
142
                   test_state = 2;
                }
143
144
               break
145
            case 2:
146 🔻
               if(IsMotionIdle()){
147
                   print("test_state 2\n");
148
                   MoveTCP(400,400,400,150,30,-100);
149
                   test_state = 3;
150
                }
151
               break:
152
            case 3:
153 🔻
               if(IsMotionIdle()){
154
                   print("test_state 3\n");
                   test_flag = false;
155
156
                   test_state = 0;
157
                }
158
                break;
159
            }
160
         }
161
         162
163
    }
104
```

The code above is an action code that performs two joint control motions and one TCP control motion sequentially. There is a 'test_flag' which decides whether or not to execute the motion sequence, and if this value is true, it moves sequentially from the previous motion to the next motion according to the 'test_state' value indicating the progress of the sequence.

At this point, check whether the previous motion is over or not, and there is an 'IsMotionIdle' function to make it easier. This function sends instructions to the robot's main controller.

```
165 	int MainWindow::IsMotionIdle(){
166 	return ((cmdConfirmFlag == true) && (systemStat.sdata.robot_state == 1));
167 }
```


The 'onLogic' function, which contains an action sequence, is linked to a timer provided by Qt. In this example, it is set at 10ms intervals, and this function is executed every 10ms.

```
409
410 void MainWindow::on_BTN_TEST_clicked()
411
412 test_state = 0;
413 test_flag = true;
414
415
```

Executing robot motion is simple. Set the 'test_state' value representing the motion sequence state to 0, the starting point of the motion, and set the 'test_flag' value to perform the motion to move the robot.

The behavior shown in the example code provided is very simple, but free from structure constraints. Users can build own application based on this example code, or build a separate application by understanding only the script.

APPENDIX F. COORDINATE SYSTEM

• Global Coordinate (Base coordinate)

Once the robot is fixed with the coordinate system fixed to the base of the robot, the global coordinate system is also fixed.

The center of the base surface is the origin. Set the robot direction to the + Z direction from the origin and the connector direction to the + Y direction from the origin.

• Local Coordinate (Tool coordinate)

Coordinate system fixed to TCP (Tool Center Point) of the robot, the direction of the axis changes in real time by setting or moving the TCP offset. Set TCP as the origin and set the robot direction from the origin to the + Y direction and the teach button direction from the origin to the + Z direction.

APPENDIX G. STOPPING TIME/DISTANCE

In the RB Series of collaborative robots, the time and distance between the robots stop and the distance are generated by the safety monitoring function.

The graph below shows the stop time and stop distance for stop category 1 for Joint 0 (Base axis), Joint 1 (Shoulder axis), and Joint 2 (Elbow axis).

Depending on the situation, the actual stop motion may differ from the results below. Joint 0 is the result of horizontal movement, and Joint 1 and 2 are the result of vertical downward movement. For the length of the arm, the maximum length is applied.

RB5-850E Series Base (Joint 0)		
	Stop Distance (mm)	Stop Time (sec)
Test 1	183.38	0.19
Test 2	160.1	0.24
Test 3	191.03	0.24
Maximum	191.03	0.24
Average	178.17	0.22
Condition	Max. Reach / Max. Velocity / Horizontal Motion	

RB5-850E Series Shoulder (Joint 1)		
	Stop Distance (mm)	Stop Time (sec)
Test 1	183.71	0.13
Test 2	177.53	0.13
Test 3	183.39	0.21
Maximum	183.71	0.21
Average	181.54	0.16
Condition	Max. Reach / Max. Velocity / Vertical Downward Motion	

RB5-850E Series Elbow (Joint 2)		
	Stop Distance (mm)	Stop Time (sec)
Test 1	90.935	0.14
Test 2	94.809	0.14
Test 3	81.987	0.14
Maximum	94.809	0.14
Average	89.24	0.14
Condition	Max. Reach / Max. Velocity / Vertical Downward Motion	

APPENDIX H. NAMEPLATE

The nameplate of the robot is divided into the robot arm and the control box as shown below.

_

[Robot Arm]

RB5-850E Series

RAINBOW ROBOTICS 34122, 10-19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL: +82.42.719.8070 FAX: +82.42.719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB5-850E R585E-2001001 850 mm 21.5 kg 48 VDC	Max. Payload Mfg. Date	5 kg 2020-01
RAINBOW ROBOTICS 34122, 10.19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL:+82.42.719.8070 FAX:+82.42.719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB5-850EA1 R585E-2001001 850 mm 21.5 kg 48 VDC	Max. Payload Max. Pressure Mfg. Date	5 kg 10 bar 2020-01
RAINBOW ROBOTICS RAINBOW ROBOTICS 34122, 10-19, Exporto 339beon-gil, Yuseong-gu, Daejeon, Korea TEL: +82.42.719.8070 FAX: +82.42.719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB5-850EA2 R585E-2001001 850 mm 21.5 kg 48 VDC	Max. Payload Max. Pressure Mfg. Date	5 kg 10 bar 2020-01

RB3-1200E Series

RAINBOW ROBOTICS RAINBOW ROBOTICS 34122, 10-19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL :+82.42.719.8070 FAX :+82.42.719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB3-1200E R312E-2001001 1200 mm 22 kg 48 VDC	Max. Payload 3 kg Mfg. Date 2020-01
RAINBOW ROBOTICS RAINBOW ROBOTICS 34122, 10-19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL: +82.42.719.8070 FAX: +82.42.719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB3-1200EA1 R312E-2001001 1200 mm 22 kg 48 VDC	Max. Payload 3 kg Max. Pressure 10 bar Mfg. Date 2020-01
RAINBOW ROBOTICS RAINBOW ROBOTICS 34122, 10-19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL: +82.42.719.8070 FAX: +82.42.719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB3-1200EA2 R312E-2001001 1200 mm 22 kg 48 VDC	Max. Payload 3 kg Max. Pressure 10 bar Mfg. Date 2020-01

RB10-1300E Series

RAINBOW ROBOTICS RAINBOW ROBOTICS 34122, 10-19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL: +82.42,719.8070 FAX: +82.42,719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB10-1300E R1013E-2001001 1300 mm 33 kg 48 VDC	Max. Payload 10 kg Mfg. Date 2020-01
RAINBOW ROBOTICS ALINBOW ROBOTICS 34122, 10-19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL : +82.42,719.8070 FAX : +82.42,719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB10-1300EA1 R1013E-2001001 1300 mm 33 kg 48 VDC	Max. Payload 10 kg Max. Pressure 10 bar Mfg. Date 2020-01
RAINBOW ROBOTICS ALINBOW ROBOTICS 34122, 10-19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea TEL: +82.42.719.8070 FAX: +82.42.719.8071	Designation Model No. Serial No. Reach Weight Supply Power	Robot Arm RB10-1300EA2 R1013E-2001001 1300 mm 33 kg 48 VDC	Max. Payload 10 kg Max. Pressure 10 bar Mfg. Date 2020-01

[Control Box]

RB5-850E Series, RB3-1200E Series: Stand type(CB04)

RAINBOW ROBOTICS Designation RAINBOW ROBOTICS Model No. 34122, 10.19, Expo-ro 339beon-gil, Yuseong-gu, Daejeon, Korea Designation TEL: +82.42.719.8070 Mig. Year & Month Rated Power Supply	Control Box CB04 C04-5-2001001 RB-ES-020 2020-01 Single phase 100-240 VAC	Rated Current Rated Frequency S.C.C.R Weight	15 A 50~60 Hz 2.5 kA 17.3kg
--	---	---	--------------------------------------

APPENDIX I. MODBUS TCP SERVER

Warning

This manual describes the Modbus server (slave controller). See Section 6 for a description of the Modbus client features.

1. Overview

RB's Modbus TCP server (slave controller) is fixed at port number 502. The IP address changes depending on the network settings through the UI. (The initial IP address is 10.0.2.7.) RB's Modbus server allows the connection of multiple clients and executes the following operation commands.

	Function Code	Function Name		
	2	Read Discrete Inputs		
Bit	1	Read Coils		
Address	5	Write Single Coil		
	15	Write Multiple Coils		
16 h:t	4	Read Input Registers		
16-bit (Word)	3	Read Multiple Holding Registers		
(Word) Address	6	Write Single Holding Register		
Addless	16	Write Multiple Holding Registers		

2. Exception Code

The following error message is returned when accessing the wrong address, incorrect range of values, or invalid command sent.

Exception Code	Exception Name
1	Illegal Function
2	Illegal Data Address
3	Illegal Value

3. Bit Address Map

	Bit Address						
Address	Function	Read	Write				
0	Box digital input 0	0	Х				
1	Box digital input 1	0	Х				
2	Box digital input 2	0	Х				
3	Box digital input 3	0	Х				
4	Box digital input 4	0	Х				
5	Box digital input 5	0	Х				
6	Box digital input 6	0	Х				
7	Box digital input 7	0	Х				
8	Box digital input 8	0	Х				
9	Box digital input 9	0	Х				
10	Box digital input 10	0	Х				
11	Box digital input 11	0	Х				
12	Box digital input 12	0	Х				
13	Box digital input 13	0	Х				
14	Box digital input 14	0	Х				
15	Box digital input 15	0	Х				
16	Box digital output 0	0	0				
17	Box digital output 1	0	0				
18	Box digital output 2	0	0				
19	Box digital output 3	0	0				
20	Box digital output 4	0	0				
21	Box digital output 5	0	0				
22	Box digital output 6	0	0				
23	Box digital output 7	0	0				
24	Box digital output 8	0	0				
25	Box digital output 9	0	0				
26	Box digital output 10	0	0				
27	Box digital output 11	0	0				
28	Box digital output 12	0	0				
29	Box digital output 13	0	0				
30	Box digital output 14	0	0				
31	Box digital output 15	0	0				
32	Tool digital input 0	0	Х				
33	Tool digital input 1	0	Х				
34	Tool digital output 0	0	0				
35	Tool digital output 1	0	0				

4. Word(16 bit) Address Map

	Word Ad	dress		
Address	Function	Read	Write	Comments
0	Box digital input 0~15	0	X	[BBBB BBBB BBBB BBBB]
1	Box digital output 0~15	0	0	[BBBB BBBB BBBB BBBB]
2	Box analog input 0	0	Х	1mV unit
3	Box analog input 1	0	Х	1mV unit
4	Box analog input 2	0	х	1mV unit
5	Box analog input 3	0	Х	1mV unit
6	Box analog output 0	0	0	1mV unit
7	Box analog output 1	0	0	1mV unit
8	Box analog output 2	0	0	1mV unit
9	Box analog output 3	0	0	1mV unit
10	Extend digital input 0~15	0	Х	[BBBB BBBB BBBB BBBB]
11	Extend digital output 0~15	0	Х	[BBBB BBBB BBBB BBBB]
12	Extend analog input 0	0	Х	1mV unit
13	Extend analog input 1	0	X	1mV unit
14	Extend analog input 2	0	X	1mV unit
15	Extend analog input 3	0	X	1mV unit
16	Extend analog output 0	0	0	1mV unit
17	Extend analog output 1	0	0	1mV unit
18	Extend analog output 2	0	0	1mV unit
19	Extend analog output 2	0	0	1mV unit
20~29		rved (Bo		
30	Tool output voltage	0	0	0, 12, 24
31	Tool digital input 0~1	0	x	[TTxx xxxx xxxx xxxx]
32	Tool digital output 0~1	0	0	[TTxx xxxx xxxx xxxx]
33	Tool analog input 0	0	x	1mV unit
34	Tool analog input 1	0	X	1mV unit
35~49		ved (To		In and
50	Is Robot Activated	0	X	0 or 1
51	Is Real-mode	0	X	0 or 1
52	Is Collision Detected	0	X	0 or 1
53	Is Robot arm power engaged	0	X	0 or 1
54	Is Direct Teaching mode	0	X	0 or 1
55	Is Robot moving	0	X	0 or 1
56	Is Pause state	0	X	0 or 1
57	Is Teaching pendant is connected	0	X	0 or 1
58	Is Program Run	0	X	0 or 1
59	Is No-Arc mode is on	0	X	0 or 1
60	Is EMG button released	0	X	0 or 1
61	Is First Program Run	0	X	0 or 1
62~99	Reserved			
100	Command: Start Program Once	0	0	Rising Edge is command
100	Command: Start Program Repeat	0	0	Rising Edge is command
102	Command: Pause Program	0	0	Rising Edge is command
102	Command: Stop Program	0	0	Rising Edge is command
	Command: Resume from pause	0	0	Rising Edge is command
104				
104 105	Command: Resume from collision	0	0	Rising Edge is command

107	Command: Robot Arm activation	0	О	Rising Edge is command
108	Command: Change to Real-mode	0	0	Rising Edge is command
109	Command: Power off the robot arm	0	0	Rising Edge is command
110~127	Reserved	(Future	e Syster	m)
128~255	User General Purpose Register	0	0	User Define Area
256	Joint reference 0	0	Х	0.02deg unit / Signed
257	Joint reference 1	0	Х	0.02deg unit / Signed
258	Joint reference 2	0	Х	0.02deg unit / Signed
259	Joint reference 3	0	Х	0.02deg unit / Signed
260	Joint reference 4	0	Х	0.02deg unit / Signed
261	Joint reference 5	0	х	0.02deg unit / Signed
262	Joint angle 0	0	х	0.02deg unit / Signed
263	Joint angle 1	0	х	0.02deg unit / Signed
264	Joint angle 2	0	х	0.02deg unit / Signed
265	Joint angle 3	0	х	0.02deg unit / Signed
266	Joint angle 4	0	х	0.02deg unit / Signed
267	Joint angle 5	0	х	0.02deg unit / Signed
268	Joint current 0	0	х	10mA unit / Signed
269	Joint current 1	0	х	10mA unit / Signed
270	Joint current 2	0	х	10mA unit / Signed
271	Joint current 3	0	х	10mA unit / Signed
272	Joint current 4	0	х	10mA unit / Signed
273	Joint current 5	0	X	10mA unit / Signed
274	Joint information 0	0	x	
275	Joint information 1	0	x	
276	Joint information 2	0	x	
277	Joint information 3	0	X	
278	Joint information 4	0	x	
279	Joint information 5	0	X	
280	Joint temperature 0	0	x	celcius unit
280	Joint temperature 1	0	X	celcius unit
282	Joint temperature 2	0	X	celcius unit
283	Joint temperature 3	0	x	celcius unit
284	Joint temperature 4	0	X	celcius unit
285	Joint temperature 5	0	X	celcius unit
286	Joint 0 Estimated Current	0	X	10mA unit / Signed
287	Joint 1 Estimated Current	0	X	10mA unit / Signed
288	Joint 2 Estimated Current	0	X	10mA unit / Signed
289	Joint 3 Estimated Current	0	X	10mA unit / Signed
200	Joint 4 Estimated Current	0	X	10mA unit / Signed
291	Joint 5 Estimated Current	0	X	10mA unit / Signed
292	Joint 0 Gap(EstiMeas.) Current	0	X	10mA unit / Signed
293	Joint 1 Gap(EstiMeas.) Current	0	X	10mA unit / Signed
293	Joint 2 Gap(EstiMeas.) Current	0	X	10mA unit / Signed
294	Joint 3 Gap(EstiMeas.) Current	0	X	10mA unit / Signed
295	Joint 4 Gap(EstiMeas.) Current	0	X	10mA unit / Signed
290	Joint 5 Gap(EstiMeas.) Current			10mA unit / Signed
297	Joint 0 Gap(EstiMeas.) Current	0	X	10mA unit / Signed
<u> </u>	Joint 1 Gap(EstiMeas.) Curr+LPF Joint 1 Gap(EstiMeas.) Curr+LPF	0	X	-
	Joint 2 Gap(EstiMeas.) Curr+LPF	0	X	10mA unit / Signed
300	-	0	X	10mA unit / Signed
301	Joint 3 Gap(EstiMeas.) Curr+LPF	0	Х	10mA unit / Signed

302	Joint 4 Gap(EstiMeas.) Curr+LPF	0	х	10mA unit / Signed
303	Joint 5 Gap(EstiMeas.) Curr+LPF	0	Х	10mA unit / Signed
304~329	Reserved (Joint In	formati	on)
330	TCP reference X	0	Х	0.1mm unit / Signed
331	TCP reference Y	0	Х	0.1mm unit / Signed
332	TCP reference Z	0	Х	0.1mm unit / Signed
333	TCP reference RX	0	Х	0.02deg unit / Signed
334	TCP reference RY	0	Х	0.02deg unit / Signed
335	TCP reference RZ	0	Х	0.02deg unit / Signed
336	TCP position X	0	Х	0.1mm unit / Signed
337	TCP position Y	0	Х	0.1mm unit / Signed
338	TCP position Z	0	Х	0.1mm unit / Signed
339	TCP position RX	0	Х	0.02deg unit / Signed
340	TCP position RY	0	Х	0.02deg unit / Signed
341	TCP position RZ	0	Х	0.02deg unit / Signed
342~389	Reserved	(TCP In	formati	on)

APPENDIX J. SYSTEM UPDATE

Warning

It is recommended to back up the program files (.wsl) inside the tablet UI before the system update.

1. Overview

Rainbow Robotics' system update is a two-step process.

UI update through APK install \rightarrow System software (control box) update

2. Backup Program file

Connect the tablet and personal / business PC and obtain the program file (.wsl) from the path below and back it up.

 $\texttt{Tablet} \rightarrow \texttt{Android} \rightarrow \texttt{data} \rightarrow \texttt{com.rainbow.cobot} \rightarrow \texttt{files} \rightarrow \texttt{work} \rightarrow \texttt{GET} \text{ .wsl files}$

(* It is recommended that you back up the acquired files before proceeding to the next step.)

3. UI Update

Rainbow Robotics' tablet UI program is distributed in the form of APK.

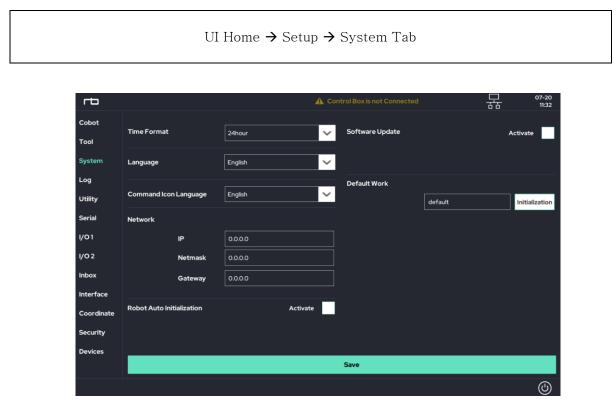
This is the same installation file as a regular Android application. Therefore, UI program is updated by moving the installation APK file to the tablet and installing it.

(* Rainbow Robotics recommends installing after deleting an existing application.)

(* When deleting an existing application, the program file (.wsl) is deleted together. Back up the program file in step 1 and proceed with this process.)

Copy the distributed APK file into Table \rightarrow APK install

4. Connection between Tablet PC and Control Box


Connect the tablet to the control box and access the UI program. After connecting, connect the control box communication with the tablet.

UI Home \rightarrow Make \rightarrow Click 'State' button \rightarrow Connect

(If the communication between the tablet and the control box is normal, the first box will be lit blue. For safety reasons, it is recommended not to initialize the robot.)

5. Go to and activate the system software update

Navigate to the system software update path as shown below.

In the "Software Update" section on the right, click the Activate checkbox.

гъ				🛕 Con			뮮	07-: 11::	
Cobot Tool	Time Format		24hour	~	Software Update	lindete	,	Activate	•
System	Language		English	~		Update			
Log Utility	Command Icon La	anguage	English	~	Default Work	default		Initializati	on
Serial	Network								
I/O1	IP	,	0.0.0.0						
1/02	N	letmask	0.0.0.0						
Inbox	G	ateway	0.0.0.0						
Interface									
Coordinate	Robot Auto Initiali	ization		Activate					
Security									
Devices									
					Save				
								Ċ)

6. Progress System Software Update

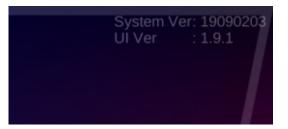
The Update button will appear, and click this button to open a popup window.

гъ						07-20 14:50
Cobot Tool	Time Format	24hour	~	Software Update		Activate 🚺
System	Language		i		date	
Log			Information			
Utility	Command Icon Lan					Initialization
Serial	Network					
I/O1	IP	System will be updated.				
1/02	Ne	Current system-software ver New system-software version				
Inbox	Ga					
Interface						
Coordinate	Robot Auto Initializ	ок		Cancel		
Security						
Devices	-					
				Save		
						(4)

Press "OK" button to update the software.

If the update is completed normally after clicking the OK button, the PC of the control box (controller) will automatically restart within $5 \sim 15$ seconds.

During the restart process, "Please Wait…" is displayed on the LCD of the control box. Is displayed temporarily. This indicates that the control box is rebooting.


After the reboot is completed, "Normal Operation" is displayed on the LCD of the control box.

7. Check the Update

Reconnect the UI tablet and control box.

UI Home \rightarrow Make \rightarrow Click 'State' button \rightarrow Connect

When you go back to the home screen of the UI, the software version is displayed on the upper right (or lower left). Check if it is updated to the correct version.

APPENDIX K. ANDROID TABLET CONFIGURATION

Before using the UI program, the following tablet settings are required.

5:46 Tue, Februa	any 18				(-	≈ © 57% å	· - >	
 140, 140, 140, 140, 140, 140, 140, 140,	*	0	;;; 1	*		Ļţ		
P Android System USB	for file transfer 🐱							
Settings Device charge	ging slowly \sim							2
▲ Google 현재 위치:-6*	8.36 AM 👻							
				,	otification settings	Clear		
Notifications Block, Allow, Do not disturb								
Lock screen Screen lock type, Clock styl		Emergency o	calls only					
	ш	0		<				

1. Goto Setting section of the Android.

2. Goto "About Tablet" > "Software Information".

5:47 🖬						¥ ∜-© 57% å			
Settings						a 🔒			
	Screen time, App tim	ners, Wind down							
	Device care Battery, Storage, Me	Device care Bettery, Steray, Memory, Security							
	Apps Default apps, App p	rmissions							
	General manage	ement Date and time, Reset							
	* Accessibility Voice Assistant, Mo	no audio, Assistant menu							
	Software updat Download updates, 1								
	User manual User manual								
	About tablet Status, Legal inform	ation, Tablet name							
	Developer options		-						
			0	<					
17 🖬						₩ % © 57%			
< About table						Q			
		Gala	axy Tab A (2018,	10.5)					
			Edit						
	Phone number				Unknown				
	Model number				SM-T595N				
	Serial number				R54M50068G				
	IMEI				351917100750090				
	Status View the SIM card status, II	AD, and other information.							
	Legal information								
		or							
	Regulatery informat								
	Software informatio		on, kernel version, build number,	and more.					
	Software informatio View the currently installed Battery information	1		and more.	J				

3. Multi-click (7 or more times) "Build Number" of tablet information.

5:47 🖿					🕷 🕾 🛇 57% 🛱
< Software information					
One UI versio	n				
Android versi	on				
Baseband ver T595NKOU48SL3					
Kernel versio 3.18.120-1713664 #2 Tue Dec 17 17:	2				
Build number PPR1.180610.011]	
SE for Androi Enforcing SEPF_SM-T595N_ Tue Dec 17 16:57:	9_0013			- ·	
Knox version Knox 3.3 Knox API level 28 TIMA 4.1.0					
Service provid SADMC_SM-T595 de0fd344	der SW ver. n_KOO_KOO_PP_0007				
	III	C)	<	

4. A menu called "Developer Options" will appear under "About Tablet" as shown below.

5:47 🖿			₩ 🕏 🛇 57% 🛍
Settings			Q 🕚
	~	Screen time, App timers, Wind down	
	ଡ଼	Device care Battery, Storage, Memory, Security	
		Apps Default apps, App permissions	
	111	General management Language and input. Date and time. Reset	
	¥	Accessibility Voice Assistant, Mono audio, Assistant menu	
	U	Software update Download updates, Last update	
	2	User manual User manual	
17	-	About tablet Status, Legal information, Tablet name	
	{}	Developer options Developer options	
· · · ·			

5. Activate "USB Debugging" in "Developer Options".

5:48 🔛						¥ %⊙ 57% ā			
< Developer of	options					Q			
	On								
	Auto update system Apply updates when the tablet restarts.								
	Demo mode								
	Night mode Always off								
	Quick settings developer tiles	1							
	Debugging				,				
Ĺ	USB debugging Debug mode when USB is connected								
	Revoke USB debugging autho	rizations			/				
	Bug report shortcut Show a button in the power menu for ta	king a bug report			\bigcirc				
	Select mock location app No mock location app set								
		Ш	0	<					

6. Run the APK distributed by Rainbow Robotics to install the UI program on your tablet.

APPENDIX L. BRAKE SYSTEM

The configuration of the Brake System on each axis of the robot arm consists of a support frame, solenoid, brake ring, brake shaft, brake spring and brake wing, which are installed on the robot joint as shown below.

If the solenoid is on, the physical interference between the turning radius of the brake ring and the brake wing is released, and if the solenoid is off, the physical interference between the end of the brake ring and the brake wing occurs, which stops the rotation of the driveshaft.

When the brake ring rotates and pushes through the brake wing, the wing returns to the spring force, and then a bi-directional brake occurs through physical interference, keeping both bi-directional rotations of the driveshaft stationary.

WE TOUCH THE CORE .

Rainbow Robotics